IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 李宏毅《机器学习》Introduction -> 正文阅读

[人工智能]李宏毅《机器学习》Introduction

A. AI/机器学习/深度学习

AI是目的,机器学习是手段,深度学习是机器学习其中一种方法

B.机器学习是什么?

C.Learning path

?

?C1 监督学习:

INPUT :大量资料

OUTPUT: 人工标注 (label)

C11任务:

回归/分类/结构化学习

分类:下围棋,可以看作十九乘十九个类别的分类问题

结构化学习:OUTPUT:结构性的对象(比如句子/分辨图片的结构)

C12 模型:

线性模型/非线性模型

非线性:SVM / deep learning/ decision tree/...

C2 半监督学习

OUTPUT 既有labelled?又有 unlabeled (对学习也可能有用)

C3 迁移学习

OUTPUT 既有labelled?又有 unlabeled 以及其他不相干资料?(对学习也可能有用)

C4 无监督学习

INPUT :大量资料

OUTPUT: 无

C5 强化学习

VS监督学习(训练过程中):INPUT,? OUTPUT:正确答案

强化学习(训练过程中):INPUT,OUTPUT:分数(做的好/不好)

若我们用Alpha Go当做例子时,supervised learning就是告诉机器:看到这个盘式你就下“5-5”,看到这个盘式你就下“3-3”

reinforcement learning的意思是:机器跟对手互下,机器会不断的下棋,最后赢了,机器就会知道下的不错,但是究竟是哪里可以使它赢,它其实是不知道的。我们知道Alpha Go其实是用监督学习加上reinforcement learning去学习的。先用棋谱做监督学习,然后在做reinforcement learning,但是reinforcement learning需要一个对手,如果使用人当对手就会很让费时间,所以机器的对手是另外一个机器。

图片,资料来自李宏毅《机器学习》

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-01-11 23:59:55  更:2022-01-12 00:00:51 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 22:27:03-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码