| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 有监督 无监督 自监督 半监督 弱监督 -> 正文阅读 |
|
[人工智能]有监督 无监督 自监督 半监督 弱监督 |
自己学习做笔记用的,从别人的讲解中摘抄。 有监督:用有标签的数据训练。 半监督:数据分为两部分,小部分有标签,大部分无标签。用有标签的数据训练网络,用训练后的网络对无标签的数据进行分类制作伪标签,用一个挑选原则挑选出认为标签正确的数据再对网络进行训练。 无监督:无监督学习则是没有明确目的的训练方式,你无法提前知道结果是什么,效果也很难评估。(聚类、降维、GAN) 弱监督:不完全监督(只注释一部分图像)不确切监督(对图像进行注释但对对象没有进行注释)不精确监督(错误标注) 自监督:自监督学习主要是利用辅助任务(pretext)从大规模的无监督数据中挖掘自身的监督信息,通过这种构造的监督信息对网络进行训练,从而可以学习到对下游任务有价值的表征。 监督学习中的 Pretrain - Finetune 流程:我们首先从大量的有标签数据上进行训练,得到预训练的模型,然后对于新的下游任务(Downstream task),我们将学习到的参数(比如输出层之前的层的参数)进行迁移,在新的有标签任务上进行「微调」,从而得到一个能适应新任务的网络。 自监督的 Pretrain - Finetune 流程:首先从大量的无标签数据中通过 pretext 来训练网络(自动在数据中构造监督信息),得到预训练的模型,然后对于新的下游任务,和监督学习一样,迁移学习到的参数后微调即可。所以自监督学习的能力主要由下游任务的性能来体现。 |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 | -2024/12/23 18:24:13- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |
数据统计 |