IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> torch学习笔记(7)——DataLoad操作以LeNet为例(详解+储备知识补充) -> 正文阅读

[人工智能]torch学习笔记(7)——DataLoad操作以LeNet为例(详解+储备知识补充)

python储备知识补充

OS操作补充

(1)os.path.abspath(file)&os.path.dirname

import os
# os.path.dirname功能:去掉文件名,返回目录
# os.path.abspath(__file__) 作用: 获取当前脚本的完整路径
BASE_DIR = os.path.abspath(__file__)
print(BASE_DIR)
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
print(BASE_DIR)
dataset_dir = os.path.join(BASE_DIR, "data", "RMB_data")

(2)os.walk(filedir)

import os

# os.walk(filedir)这个函数会返回三个对象
# root(目录路径,元组格式)
# dirs(子目录名,它是一个列表,因为在一个目录路径下会有很多很多子目录,,元组格式)
# files(文件名,它也是一个列表,因为同一目录下一班有多个文件,元组格式)
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
dataset_dir = os.path.abspath(os.path.join(BASE_DIR, "data", "RMB_data"))  # 待分割数据集路径
print(dataset_dir)
root, dirs, files = os.walk(dataset_dir)
print(root, type(root))
print(dirs, type(dirs))
print(files, type(files))

(3)lambda匿名函数&x.endswith()&filter()&list()

import os
import random
import shutil

BASE_DIR = os.path.dirname(os.path.abspath(__file__))
dataset_dir = os.path.abspath(os.path.join(BASE_DIR, "data", "RMB_data"))  # 待分割数据集路径
print(dataset_dir)
root, dirs, files = os.walk(dataset_dir)
for root, dirs, files in os.walk(dataset_dir):
    # 逐文件遍历
    for sub_dir in dirs:
        imgs = os.listdir(os.path.join(root, sub_dir))  # 获取图像绝对路径
        # lambda来创建匿名函数,lambda作为一个表达式,定义了一个匿名函数。x为函数入口参数,x.endswith('.jpg')为函数体。
        # x.endswith('.jpg')判断字符串是否以'.jpg'结尾
        # filter(函数,序列)函数用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表
        #  list() 方法用于将可迭代对象(字符串、列表、元祖、字典)转换为列表
        imgs = list(filter(lambda x: x.endswith('.jpg'), imgs))
        print(imgs)

DataLoad机制详解

# data:搜集(Img,Label)、划分(train:训练模型、valid:验证模型是否过拟合、test:测试模型性能)、读取(DataLoader)、预处理(transforms)
# DataLoad包括Sample和DataSet,其中,Sample生成index;DataSet用于根据Index读取Img、Label
# torch。utils.data.DataLoader是用来构建可迭代的数据装载器
# 参数:dataset:Dataset类,决定数据从哪读取及如何读取;batchsize:batch大小;num_works:是否多进程读取数据;shuffle:每个epoch是否乱序;drop_last:当样本数补能被batchsize整除时,是否舍弃最后一批数据
# epoch:所有训练样本都输入到模型中
# iteraction:一批样本输入到模型中
# batchsize:batch大小,决定epoch中含有多少个iteration
# torch.utils.data.DataSet()Dataset抽象类,所有自定义的Dataset需要继承他,并通过__getitem__()复写,getitem用于接收一个index,返回一个sample

案例

数据集划分

# 数据集划分
import os
import random
import shutil

BASE_DIR = os.path.dirname(os.path.abspath(__file__))  # 存储代码.py所在文件夹


# 用于生成存储文件夹
def makedir(new_dir):
    if not os.path.exists(new_dir):
        os.makedirs(new_dir)


if __name__ == '__main__':
    dataset_dir = os.path.abspath(os.path.join(BASE_DIR, "data", "RMB_data"))  # 待分割数据集路径
    split_dir = os.path.abspath(os.path.join(BASE_DIR, "data", "rmb_split"))  # 分割后的一级文件夹路径
    train_dir = os.path.join(split_dir, "train")  # 训练集路径
    valid_dir = os.path.join(split_dir, "valid")  # 验证集路径
    test_dir = os.path.join(split_dir, "test")  # 测试集路径

    train_pct = 0.8  # 训练集比重
    valid_pct = 0.1  # 验证集比重
    test_pct = 0.1  # 测试集比重
    # 遍历dataset_dir下所有文件夹及子文件
    for root, dirs, files in os.walk(dataset_dir):
        # 逐文件夹遍历
        for sub_dir in dirs:

            imgs = os.listdir(os.path.join(root, sub_dir))  # 获取图像绝对路径
            imgs = list(filter(lambda x: x.endswith('.jpg'), imgs))  # 获取图像列表
            random.shuffle(imgs)  # 图像列表乱序
            img_count = len(imgs)  # 记录列表长度,用于之后的数据集分割

            train_point = int(img_count * train_pct)  # 训练集长度
            valid_point = int(img_count * (train_pct + valid_pct))  # 验证集长度
            # warning机制,没遍历到任何图像
            if img_count == 0:
                print("{}目录下,无图片,请检查".format(os.path.join(root, sub_dir)))
                import sys

                sys.exit(0)
            # 按数据集长度遍历数据集内部图像
            for i in range(img_count):
                # 首先填充训练集
                if i < train_point:
                    # 存储图像地址
                    out_dir = os.path.join(train_dir, sub_dir)
                # 其次,验证集
                elif i < valid_point:
                    out_dir = os.path.join(valid_dir, sub_dir)
                # 最后,预测集
                else:
                    out_dir = os.path.join(test_dir, sub_dir)
                # 创建输出路径
                makedir(out_dir)
                # 创建图像输出地址
                target_path = os.path.join(out_dir, imgs[i])
                src_path = os.path.join(dataset_dir, sub_dir, imgs[i])
                # 将图片复制过去
                shutil.copy(src_path, target_path)
            # 显示数据集划分情况
            print('Class:{}, train:{}, valid:{}, test:{}'.format(sub_dir, train_point, valid_point - train_point,
                                                                 img_count - valid_point))

在这里插入图片描述

模型搭建

lenet.py

import torch.nn as nn
import torch.nn.functional as F


class LeNet(nn.Module):
    def __init__(self, classes):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, classes)

    def forward(self, x):
        out = F.relu(self.conv1(x))
        out = F.max_pool2d(out, 2)
        out = F.relu(self.conv2(out))
        out = F.max_pool2d(out, 2)
        out = out.view(out.size(0), -1)
        out = F.relu(self.fc1(out))
        out = F.relu(self.fc2(out))
        out = self.fc3(out)
        return out

    def initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_normal_(m.weight.data)
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight.data, 0, 0.1)
                m.bias.data.zero_()


class LeNet2(nn.Module):
    def __init__(self, classes):
        super(LeNet2, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 6, 5),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(6, 16, 5),
            nn.ReLU(),
            nn.MaxPool2d(2, 2)
        )
        self.classifier = nn.Sequential(
            nn.Linear(16*5*5, 120),
            nn.ReLU(),
            nn.Linear(120, 84),
            nn.ReLU(),
            nn.Linear(84, classes)
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size()[0], -1)
        x = self.classifier(x)
        return x

class LeNet_bn(nn.Module):
    def __init__(self, classes):
        super(LeNet_bn, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.bn1 = nn.BatchNorm2d(num_features=6)

        self.conv2 = nn.Conv2d(6, 16, 5)
        self.bn2 = nn.BatchNorm2d(num_features=16)

        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.bn3 = nn.BatchNorm1d(num_features=120)

        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, classes)

    def forward(self, x):
        out = self.conv1(x)
        out = self.bn1(out)
        out = F.relu(out)

        out = F.max_pool2d(out, 2)

        out = self.conv2(out)
        out = self.bn2(out)
        out = F.relu(out)

        out = F.max_pool2d(out, 2)

        out = out.view(out.size(0), -1)

        out = self.fc1(out)
        out = self.bn3(out)
        out = F.relu(out)

        out = F.relu(self.fc2(out))
        out = self.fc3(out)
        return out

    def initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_normal_(m.weight.data)
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight.data, 0, 1)
                m.bias.data.zero_()

commen_tools.py

import torch
import random
import psutil
import numpy as np
from PIL import Image
import torchvision.transforms as transforms


def transform_invert(img_, transform_train):
    """
    将data 进行反transfrom操作
    :param img_: tensor
    :param transform_train: torchvision.transforms
    :return: PIL image
    """
    if 'Normalize' in str(transform_train):
        norm_transform = list(filter(lambda x: isinstance(x, transforms.Normalize), transform_train.transforms))
        mean = torch.tensor(norm_transform[0].mean, dtype=img_.dtype, device=img_.device)
        std = torch.tensor(norm_transform[0].std, dtype=img_.dtype, device=img_.device)
        img_.mul_(std[:, None, None]).add_(mean[:, None, None])

    img_ = img_.transpose(0, 2).transpose(0, 1)  # C*H*W --> H*W*C
    if 'ToTensor' in str(transform_train) or img_.max() < 1:
        img_ = img_.detach().numpy() * 255

    if img_.shape[2] == 3:
        img_ = Image.fromarray(img_.astype('uint8')).convert('RGB')
    elif img_.shape[2] == 1:
        img_ = Image.fromarray(img_.astype('uint8').squeeze())
    else:
        raise Exception("Invalid img shape, expected 1 or 3 in axis 2, but got {}!".format(img_.shape[2]) )

    return img_


def set_seed(seed=1):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)


def get_memory_info():
    virtual_memory = psutil.virtual_memory()
    used_memory = virtual_memory.used/1024/1024/1024
    free_memory = virtual_memory.free/1024/1024/1024
    memory_percent = virtual_memory.percent
    memory_info = "Usage Memory:{:.2f} G,Percentage: {:.1f}%,Free Memory:{:.2f} G".format(
        used_memory, memory_percent, free_memory)
    return memory_info

my_dataset.py

import numpy as np
import torch
import os
import random
from PIL import Image
from torch.utils.data import Dataset

random.seed(1)
rmb_label = {"1": 0, "100": 1}


class RMBDataset(Dataset):
    def __init__(self, data_dir, transform=None):
        """
        rmb面额分类任务的Dataset
        :param data_dir: str, 数据集所在路径
        :param transform: torch.transform,数据预处理
        """
        self.label_name = {"1": 0, "100": 1}
        self.data_info = self.get_img_info(data_dir)  # data_info存储所有图片路径和标签,在DataLoader中通过index读取样本
        self.transform = transform

    def __getitem__(self, index):
        path_img, label = self.data_info[index]
        img = Image.open(path_img).convert('RGB')     # 0~255

        if self.transform is not None:
            img = self.transform(img)   # 在这里做transform,转为tensor等等

        return img, label

    def __len__(self):
        return len(self.data_info)

    @staticmethod
    def get_img_info(data_dir):
        data_info = list()
        for root, dirs, _ in os.walk(data_dir):
            # 遍历类别
            for sub_dir in dirs:
                img_names = os.listdir(os.path.join(root, sub_dir))
                img_names = list(filter(lambda x: x.endswith('.jpg'), img_names))

                # 遍历图片
                for i in range(len(img_names)):
                    img_name = img_names[i]
                    path_img = os.path.join(root, sub_dir, img_name)
                    label = rmb_label[sub_dir]
                    data_info.append((path_img, int(label)))

        return data_info


class AntsDataset(Dataset):
    def __init__(self, data_dir, transform=None):
        self.label_name = {"ants": 0, "bees": 1}
        self.data_info = self.get_img_info(data_dir)
        self.transform = transform

    def __getitem__(self, index):
        path_img, label = self.data_info[index]
        img = Image.open(path_img).convert('RGB')

        if self.transform is not None:
            img = self.transform(img)

        return img, label

    def __len__(self):
        return len(self.data_info)

    def get_img_info(self, data_dir):
        data_info = list()
        for root, dirs, _ in os.walk(data_dir):
            # 遍历类别
            for sub_dir in dirs:
                img_names = os.listdir(os.path.join(root, sub_dir))
                img_names = list(filter(lambda x: x.endswith('.jpg'), img_names))

                # 遍历图片
                for i in range(len(img_names)):
                    img_name = img_names[i]
                    path_img = os.path.join(root, sub_dir, img_name)
                    label = self.label_name[sub_dir]
                    data_info.append((path_img, int(label)))

        if len(data_info) == 0:
            raise Exception("\ndata_dir:{} is a empty dir! Please checkout your path to images!".format(data_dir))
        return data_info


class PortraitDataset(Dataset):
    def __init__(self, data_dir, transform=None, in_size = 224):
        super(PortraitDataset, self).__init__()
        self.data_dir = data_dir
        self.transform = transform
        self.label_path_list = list()
        self.in_size = in_size

        # 获取mask的path
        self._get_img_path()

    def __getitem__(self, index):

        path_label = self.label_path_list[index]
        path_img = path_label[:-10] + ".png"

        img_pil = Image.open(path_img).convert('RGB')
        img_pil = img_pil.resize((self.in_size, self.in_size), Image.BILINEAR)
        img_hwc = np.array(img_pil)
        img_chw = img_hwc.transpose((2, 0, 1))

        label_pil = Image.open(path_label).convert('L')
        label_pil = label_pil.resize((self.in_size, self.in_size), Image.NEAREST)
        label_hw = np.array(label_pil)
        label_chw = label_hw[np.newaxis, :, :]
        label_hw[label_hw != 0] = 1

        if self.transform is not None:
            img_chw_tensor = torch.from_numpy(self.transform(img_chw.numpy())).float()
            label_chw_tensor = torch.from_numpy(self.transform(label_chw.numpy())).float()
        else:
            img_chw_tensor = torch.from_numpy(img_chw).float()
            label_chw_tensor = torch.from_numpy(label_chw).float()

        return img_chw_tensor, label_chw_tensor

    def __len__(self):
        return len(self.label_path_list)

    def _get_img_path(self):
        file_list = os.listdir(self.data_dir)
        file_list = list(filter(lambda x: x.endswith("_matte.png"), file_list))
        path_list = [os.path.join(self.data_dir, name) for name in file_list]
        random.shuffle(path_list)
        if len(path_list) == 0:
            raise Exception("\ndata_dir:{} is a empty dir! Please checkout your path to images!".format(self.data_dir))
        self.label_path_list = path_list


class PennFudanDataset(Dataset):
    def __init__(self, data_dir, transforms):

        self.data_dir = data_dir
        self.transforms = transforms
        self.img_dir = os.path.join(data_dir, "PNGImages")
        self.txt_dir = os.path.join(data_dir, "Annotation")
        self.names = [name[:-4] for name in list(filter(lambda x: x.endswith(".png"), os.listdir(self.img_dir)))]

    def __getitem__(self, index):
        """
        返回img和target
        :param idx:
        :return:
        """

        name = self.names[index]
        path_img = os.path.join(self.img_dir, name + ".png")
        path_txt = os.path.join(self.txt_dir, name + ".txt")

        # load img
        img = Image.open(path_img).convert("RGB")

        # load boxes and label
        f = open(path_txt, "r")
        import re
        points = [re.findall(r"\d+", line) for line in f.readlines() if "Xmin" in line]
        boxes_list = list()
        for point in points:
            box = [int(p) for p in point]
            boxes_list.append(box[-4:])
        boxes = torch.tensor(boxes_list, dtype=torch.float)
        labels = torch.ones((boxes.shape[0],), dtype=torch.long)

        # iscrowd = torch.zeros((num_objs,), dtype=torch.int64)
        target = {}
        target["boxes"] = boxes
        target["labels"] = labels
        # target["iscrowd"] = iscrowd

        if self.transforms is not None:
            img, target = self.transforms(img, target)

        return img, target

    def __len__(self):
        if len(self.names) == 0:
            raise Exception("\ndata_dir:{} is a empty dir! Please checkout your path to images!".format(self.data_dir))
        return len(self.names)


class CelebADataset(Dataset):
    def __init__(self, data_dir, transforms):

        self.data_dir = data_dir
        self.transform = transforms
        self.img_names = [name for name in list(filter(lambda x: x.endswith(".jpg"), os.listdir(self.data_dir)))]

    def __getitem__(self, index):
        path_img = os.path.join(self.data_dir, self.img_names[index])
        img = Image.open(path_img).convert('RGB')

        if self.transform is not None:
            img = self.transform(img)

        return img

    def __len__(self):
        if len(self.img_names) == 0:
            raise Exception("\ndata_dir:{} is a empty dir! Please checkout your path to images!".format(self.data_dir))
        return len(self.img_names)

架构搭建

import os
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torch.optim as optim
from matplotlib import pyplot as plt

path_lenet = os.path.abspath(os.path.join(BASE_DIR, "model", "lenet.py"))
path_tools = os.path.abspath(os.path.join(BASE_DIR, "tools", "common_tools.py"))

import sys
# os.path.sep:路径分隔符
hello_pytorch_DIR = os.path.abspath(os.path.dirname(__file__)+os.path.sep+".."+os.path.sep+"..")
sys.path.append(hello_pytorch_DIR)

from model.lenet import LeNet
from tools.my_dataset import RMBDataset
from tools.common_tools import set_seed


set_seed()  # 设置随机种子
rmb_label = {"1": 0, "100": 1}

# 参数设置
MAX_EPOCH = 10
BATCH_SIZE = 16
LR = 0.01
log_interval = 10
val_interval = 1

# ============================ step 1/5 数据 ============================
split_dir = os.path.abspath(os.path.join(BASE_DIR, "..", "..", "data", "rmb_split"))
if not os.path.exists(split_dir):
    raise Exception(r"数据 {} 不存在, 回到lesson-06\1_split_dataset.py生成数据".format(split_dir))
train_dir = os.path.join(split_dir, "train")
valid_dir = os.path.join(split_dir, "valid")

norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]

train_transform = transforms.Compose([
    transforms.Resize((32, 32)),
    transforms.RandomCrop(32, padding=4),
    transforms.ToTensor(),
    transforms.Normalize(norm_mean, norm_std),
])

valid_transform = transforms.Compose([
    transforms.Resize((32, 32)),
    transforms.ToTensor(),
    transforms.Normalize(norm_mean, norm_std),
])

# 构建MyDataset实例
train_data = RMBDataset(data_dir=train_dir, transform=train_transform)
valid_data = RMBDataset(data_dir=valid_dir, transform=valid_transform)

# 构建DataLoder
train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
valid_loader = DataLoader(dataset=valid_data, batch_size=BATCH_SIZE)

# ============================ step 2/5 模型 ============================

net = LeNet(classes=2)
net.initialize_weights()

# ============================ step 3/5 损失函数 ============================
criterion = nn.CrossEntropyLoss()                                                   # 选择损失函数

# ============================ step 4/5 优化器 ============================
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9)                        # 选择优化器
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)     # 设置学习率下降策略

# ============================ step 5/5 训练 ============================
train_curve = list()
valid_curve = list()

for epoch in range(MAX_EPOCH):

    loss_mean = 0.
    correct = 0.
    total = 0.

    net.train()
    for i, data in enumerate(train_loader):

        # forward
        inputs, labels = data
        outputs = net(inputs)

        # backward
        optimizer.zero_grad()
        loss = criterion(outputs, labels)
        loss.backward()

        # update weights
        optimizer.step()

        # 统计分类情况
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).squeeze().sum().numpy()

        # 打印训练信息
        loss_mean += loss.item()
        train_curve.append(loss.item())
        if (i+1) % log_interval == 0:
            loss_mean = loss_mean / log_interval
            print("Training:Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
                epoch, MAX_EPOCH, i+1, len(train_loader), loss_mean, correct / total))
            loss_mean = 0.

    scheduler.step()  # 更新学习率

    # validate the model
    if (epoch+1) % val_interval == 0:

        correct_val = 0.
        total_val = 0.
        loss_val = 0.
        net.eval()
        with torch.no_grad():
            for j, data in enumerate(valid_loader):
                inputs, labels = data
                outputs = net(inputs)
                loss = criterion(outputs, labels)

                _, predicted = torch.max(outputs.data, 1)
                total_val += labels.size(0)
                correct_val += (predicted == labels).squeeze().sum().numpy()

                loss_val += loss.item()

            loss_val_epoch = loss_val / len(valid_loader)
            valid_curve.append(loss_val_epoch)
            print("Valid:\t Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
                epoch, MAX_EPOCH, j+1, len(valid_loader), loss_val_epoch, correct_val / total_val))


train_x = range(len(train_curve))
train_y = train_curve

train_iters = len(train_loader)
valid_x = np.arange(1, len(valid_curve)+1) * train_iters*val_interval - 1  # 由于valid中记录的是epochloss,需要对记录点进行转换到iterations
valid_y = valid_curve

plt.plot(train_x, train_y, label='Train')
plt.plot(valid_x, valid_y, label='Valid')

plt.legend(loc='upper right')
plt.ylabel('loss value')
plt.xlabel('Iteration')
plt.show()

# ============================ inference ============================

BASE_DIR = os.path.dirname(os.path.abspath(__file__))
test_dir = os.path.join(BASE_DIR, "test_data")

test_data = RMBDataset(data_dir=test_dir, transform=valid_transform)
valid_loader = DataLoader(dataset=test_data, batch_size=1)

for i, data in enumerate(valid_loader):
    # forward
    inputs, labels = data
    outputs = net(inputs)
    _, predicted = torch.max(outputs.data, 1)

    rmb = 1 if predicted.numpy()[0] == 0 else 100
    print("模型获得{}元".format(rmb))
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-01-16 13:03:28  更:2022-01-16 13:05:18 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 17:13:32-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码