使用matplotlib数据可视化,主要画2D图 matplotlib官网:https://matplotlib.org/index.html
一、matplotlib的三层结构
- 1.容器层
canvas(画板层)、figure(画布层)、axes(绘图区/坐标系) - 2.辅助显示层
辅助显示层为axes绘图区内除了根据数据绘制出的图像以外的内容,如网格线、坐标轴标签、刻度、标题、图例等。该层的设置目的为,使得图像能够被用户更加直观的理解,但又不会对图像本身产生实质性的影响。 - 3.图像层
图像层是指axes内通过plot、scatter、bar等函数绘制出的图像。
二、基础绘图
1. matplotlib的中文显示问题(win10)
matplotlib默认字体不支持中文,修改为支持中文即可,解决方法:
import matplotlib.font_manager as fm
import matplotlib.pyplot as plt
from matplotlib import font_manager
font = fm.FontProperties(fname=r'C:\Windows\Fonts\simhei.ttf')
a= sorted([f.name for f in font_manager.fontManager.ttflist])
for i in a:
print(i)
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
2.折线图
代码如下(示例):
import matplotlib.pyplot as plt
import random
x = range(60)
y_shanghai = [random.uniform(15,18) for i in x]
y_beijing = [random.uniform(1,3) for i in x]
plt.figure(figsize=(20,10), dpi=(100))
plt.plot(x, y_shanghai, color='b', linestyle='-.', label='上海')
plt.plot(x, y_beijing, color='m', linestyle=':', label='北京')
plt.legend(loc='upper left')
x_label = ['11点{}分'.format(i) for i in x]
plt.xticks(x[::5], labels=x_label[::5])
plt.yticks(range(0,40,5))
plt.grid(True, linestyle='dashdot', alpha=1)
plt.xlabel('时间变化')
plt.ylabel('温度变化')
plt.title('某城市11点到12点之间的温度变化')
plt.savefig('figure.svg')
plt.show()
import matplotlib.pyplot as plt
import random
x = range(60)
y_shanghai = [random.uniform(15,18) for i in x]
y_beijing = [random.uniform(1,3) for i in x]
figure, axes = plt.subplots(nrows=1, ncols=2, figsize=(20,10), dpi=(100))
axes[0].plot(x, y_shanghai, color='b', linestyle='-.', label='上海')
axes[1].plot(x, y_beijing, color='m', linestyle=':', label='北京')
axes[0].legend(loc='upper left')
axes[1].legend(loc='upper right')
x_label = ['11点{}分'.format(i) for i in x]
axes[0].set_xticks(x[::5])
axes[0].set_xticklabels(labels=x_label[::5])
axes[0].set_yticks(range(0,40,5))
axes[1].set_xticks(x[::5])
axes[1].set_xticklabels(labels=x_label[::5])
axes[1].set_yticks(range(0,40,5))
axes[0].grid(True, linestyle='dashdot', alpha=1)
axes[1].grid(True, linestyle='dashdot', alpha=1)
axes[0].set_xlabel('时间变化')
axes[0].set_ylabel('温度变化')
axes[0].set_title('上海11点到12点之间的温度变化')
axes[1].set_xlabel('时间变化')
axes[1].set_ylabel('温度变化')
axes[1].set_title('北京11点到12点之间的温度变化')
plt.show()
3. 散点图
代码如下(示例):
import matplotlib.pyplot as plt
x = [225.98, 247.07, 253.14, 457.85, 241.58, 301.01, 20.67, 288.64,
163.56, 120.06, 207.83, 342.75, 147.9 , 53.06, 224.72, 29.51,
21.61, 483.21, 245.25, 399.25, 343.35]
y = [196.63, 203.88, 210.75, 372.74, 202.41, 247.61, 24.9 , 239.34,
140.32, 104.15, 176.84, 288.23, 128.79, 49.64, 191.74, 33.1 ,
30.74, 400.02, 205.35, 330.64, 283.45]
plt.figure(figsize=(20,10), dpi=100)
plt.scatter(x, y)
plt.show()
4. 柱状图
代码如下(示例):
import matplotlib.pyplot as plt
movie_names = ['雷神3:诸神黄昏','正义联盟','寻梦环游记']
first_day = [10587.6, 10062, 1275.7]
first_weekend = [36224.9, 34479.6, 11830]
plt.figure(figsize=(15,10), dpi=100)
x = range(len(movie_names))
plt.bar(x, first_day ,width=0.2, color='m', label='首日票房')
plt.bar([i+0.2 for i in x], first_weekend, width=0.2, color='b', label='首周票房')
plt.xticks([i+0.1 for i in x], movie_names, fontsize=20)
plt.legend(fontsize=20)
plt.title('电影票房对比收入')
plt.grid()
plt.show()
5. 饼图
代码如下(示例):
import matplotlib.pyplot as plt
movie_name = ['雷神3:诸神黄昏','正义联盟','东方快车谋杀案','寻梦环游记','全球风暴','降魔传','追捕','七十七天','密战','狂兽','其它']
place_count = [60605,54546,45819,28243,13270,9945,7679,6799,6101,4621,20105]
plt.figure(figsize=(15,10), dpi=100)
plt.pie(place_count, labels=movie_name, autopct='%1.2f%%', colors=['b','r','g','y','c','m','y','k','c','g','y'])
plt.legend()
plt.axis('equal')
plt.show()
6. 直方图
代码如下(示例):
import matplotlib.pyplot as plt
time = [131, 98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115, 99, 136, 126, 134, 95, 138, 117, 111,78, 132, 124, 113, 150, 110, 117, 86, 95, 144, 105, 126, 130,126, 130, 126, 116, 123, 106, 112, 138, 123, 86, 101, 99, 136,123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127,105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114,105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134,156, 106, 117, 127, 144, 139, 139, 119, 140, 83, 110, 102,123,107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133,112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135,115, 146, 137, 116, 103, 144, 83, 123, 111, 110, 111, 100, 154,136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141,120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126,114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137, 92,121, 112, 146, 97, 137, 105, 98, 117, 112, 81, 97, 139, 113,134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110,105, 129, 137, 112, 120, 113, 133, 112, 83, 94, 146, 133, 101,131, 116, 111, 84, 137, 115, 122, 106, 144, 109, 123, 116, 111,111, 133, 150]
plt.figure(figsize=(20, 8), dpi=80)
distance = 2
group_num = (max(time) - min(time))/distance
plt.hist(time, bins=int(group_num), density=True)
plt.xticks(range(min(time), max(time)+2, distance))
plt.grid()
plt.show()
|