| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 数据预处理之数据清理,数据集成,数据规约,数据变化和离散化 -> 正文阅读 |
|
[人工智能]数据预处理之数据清理,数据集成,数据规约,数据变化和离散化 |
目录 本来这些储备知识,我想在后续的实际算法案例中进行解释,但是考虑到很多的小伙伴在学习的过程中都是逐步推进的,需要一定的时间去理解和应用,所以前期我们需要把所有的东西都准备好,这样就可以保证后续的算法实践游刃有余。 数据清理我们一般看到的数据都是较为干净的数据,也就是结构化的数据,但是有时候在日志信息中,需要我们去提取出结构化的数据进行处理,这个时候就需要用到数据清理了。 数据清理用到的工具 1、Python Python作为目前火热的编程语言,它的优势在于不需要编写大量的程序代码就可以实现我们所需的功能,而且在数据处理方面,Python的第三方库Pandas和Numpy有着不可描述的便捷性。 这也是我在概述篇里面介绍的需要准备的知识,同时在博主的文章里面也有比较详细的数据处理的文章,点击即可查看和学习。 ? 2、Kettle kettle作为ETL工具,可能很多人比较的陌生,这个工具在数据预处理方面有着比较好的优势,具有可重复性和简单性,由于它是一个图形界面的开发工具,不需要编程知识就可以完成,只需要明白每一步的过程和相应的按钮含义。 ? ? 数据清理主要包括缺失值与异常值的清理 针对缺失值,可以采用简单的删除,但如果缺失值的比例达到一定阈值,就需要读者去判断是否在采集过程中出现了问题,不可以进行简单的删除操作了,因为一旦删除了数据,数据所代表的信息就无法找回了。 也可以将缺失值添加成默认值,或是采用拉格朗日插值法对缺失值进行填充等方式。 在Pandas里面有很多种对缺失值的处理办法,还可以使用左右填充的方法以及上下填充,也可以按照某一列的统计量进行填充,还可以填充特定规则的数据,下面给出具体的代码实现 检测出空值
?直接删除
填充处理
前后左右值填充
这里需要注意一下,有些时候由于边界的原因,无法填充,那么可以先使用某一个填充然后再去使用另外一个填充模式,这样全方位的填充,效果比较的好! 数据集成主要是指将多种数据源汇集到一起,放入一个数据仓库的过程。在数据集成的过程中会出现实体识别(Entity Resolution),冗余属性识别,数据值冲突等问题。 在将多种数据源集成时,实体识别是很常见的事情,实体识别可描述成:在一个或多个数据源中的不同记录是否描述为同一个实体, 同一实体在数据集成过程中可被用于数据去重和连接键等集成操作中。 用一个数据库中的实例就是,如果 A 表中有一个字段为 stu_id, B 表中有一个字段为 stu_num,那么这两个字段是否都为同一个实体的属性呢? 如果是同一个属性,那么在集成时,这个这段可以作为多表关联的条件,生成新表时保留两者中的一个值就可以。 冗余属性识别是指是否某些属性之间存在相关性,或者一个属性可以由其它的属性推导得出。数据值冲突指的是不同数据源中针对同一个实体的属性值不同,这可能是单位不一致导致的。 数据集成就是在多种数据源的集成过程中,解决掉上述的几个问题,形成一个大的不冗余的数值清楚的数据表。 数据规约是指在保证原始数据信息不丢失的前提下,减少分析使用的数据量,数据规约中最常使用的方式是维规约。 维规约的含义是从将原先高维的数据合理的压缩成低维数据,从而减少数据量,常用的方法为特征的提取, LDA 和 PCA 降维。特征的提取为从海量数据中选择与挖掘目标相关的属性成一个子表,不包含无关的属性,比如关于泰坦尼克号生产数据的数据挖掘中,船客 Name 与幸存率是无关的,就可以不放入子表中。 PCA 是基于方差的聚类降维, LDA 是基于有监督的降维,都可以对高维数据进行降维。假定某公司进行一次知识发现的任务,选取的数据集为数据仓库中的全部数据(数据量基本在数 T 以上),固然这样可以获得的数据是最完整的,但由于数据仓库中的数据是非常大的,在如此大的数据集上进行复杂且存在迭代计算的数据分析,所要花费的时间是很长的,分析一个结果可能需要一个月的时间,时间不满足用户的需求,使得这种全量数据的分析是不可行。 数据归约技术采用维规约和数据量规约等方式,可以对数据仓库中的海量数据进行提取,获得较小数据集,仍可大致保留原数据的完整性。这样,完成一个效率和效果的兼顾,在允许的时间内完成数据挖掘任务。
|
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 | -2025/1/10 16:09:58- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |