1.nn.Dropout用法一
一句话总结:Dropout的是为了防止过拟合而设置
详解部分: 1.Dropout是为了防止过拟合而设置的 2.Dropout顾名思义有丢掉的意思 3.nn.Dropout(p = 0.3) # 表示每个神经元有0.3的可能性不被激活 4.Dropout只能用在训练部分而不能用在测试部分 5.Dropout一般用在全连接神经网络映射层之后,如代码的nn.Linear(20, 30)之后
代码部分:
class Dropout(nn.Module):
def __init__(self):
super(Dropout, self).__init__()
self.linear = nn.Linear(20, 40)
self.dropout = nn.Dropout(p = 0.3)
def forward(self, inputs):
out = self.linear(inputs)
out = self.dropout(out)
return out
net = Dropout()
2.nn.Dropout用法二
以代码为例
import torch
import torch.nn as nn
a = torch.randn(4, 4)
print(a)
"""
tensor([[ 1.2615, -0.6423, -0.4142, 1.2982],
[ 0.2615, 1.3260, -1.1333, -1.6835],
[ 0.0370, -1.0904, 0.5964, -0.1530],
[ 1.1799, -0.3718, 1.7287, -1.5651]])
"""
dropout = nn.Dropout()
b = dropout(a)
print(b)
"""
tensor([[ 2.5230, -0.0000, -0.0000, 2.5964],
[ 0.0000, 0.0000, -0.0000, -0.0000],
[ 0.0000, -0.0000, 1.1928, -0.3060],
[ 0.0000, -0.7436, 0.0000, -3.1303]])
"""
由以上代码可知Dropout还可以将部分tensor中的值置为0
|