IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> NLP-信息抽取-NER:命名实体识别的评价指标 -> 正文阅读

[人工智能]NLP-信息抽取-NER:命名实体识别的评价指标

命名实体识别的评判标准:实体的边界是否正确;实体的类型是否标注正确。主要错误类型包括:

  • 文本正确,类型可能错误;
  • 反之,文本边界错误,而其包含的主要实体词和词类标记可能正确。

对于二分类的模型,预测结果与实际结果分别可以取0和1。我们用N和P代替0和1,T和F表示预测正确和错误。将他们两两组合,就形成了下图所示的混淆矩阵(注意:组合结果都是针对预测结果而言的)。

由于1和0是数字,阅读性不好,所以我们分别用P和N表示1和0两种结果。变换之后为PP,PN,NP,NN,阅读性也很差,我并不能轻易地看出来预测的正确性与否。因此,为了能够更清楚地分辨各种预测情况是否正确,我们将其中一个符号修改为T和F,以便于分辨出结果。

在这里插入图片描述

  • P(Positive):代表 1
  • N(Negative):代表 0
  • T(True):代表预测正确
  • F(False):代表预测错误

在这里插入图片描述

  • 准确率(Accuracy):对于给定的测试数据集,分类器正确分类的样本数与总样本数之比。
    A c c u r a c y = T P + T N T P + T N + F P + F N = T P + T N 总 样 本 数 量 Accuracy=\cfrac{TP+TN}{TP+TN+FP+FN}=\cfrac{TP+TN}{总样本数量} Accuracy=TP+TN+FP+FNTP+TN?=TP+TN?
  • 精确率(Precision)**:精指分类正确的正样本个数(TP)占分类器判定为正样本的样本个数(TP+FP)的比例。
    P r e c i s i o n = T P T P + F P = 分 类 正 确 的 正 样 本 个 数 判 定 为 正 样 本 的 样 本 个 数 Precision=\cfrac{TP}{TP+FP}=\cfrac{分类正确的正样本个数}{判定为正样本的样本个数} Precision=TP+FPTP?=?
  • 召回率(Recall):召回率是指分类正确的正样本个数(TP)占真正的正样本个数(TP+FN)的比例。
    R e c a l l = T P T P + F N = 分 类 正 确 的 正 样 本 个 数 真 正 的 正 样 本 个 数 Recall=\cfrac{TP}{TP+FN}=\cfrac{分类正确的正样本个数}{真正的正样本个数} Recall=TP+FNTP?=?
  • F1-Measure值:就是精确率和召回率的调和平均值
    F 1 ? M e a s u r e = 2 1 P r e c i s i o n + 1 R e c a l l \begin{aligned}F1-Measure=\cfrac{2}{\cfrac{1}{Precision}+\cfrac{1}{Recall}}\end{aligned} F1?Measure=Precision1?+Recall1?2??

每个评估指标都有其价值,但如果只从单一的评估指标出发去评估模型,往往会得出片面甚至错误的结论;只有通过一组互补的指标去评估模型,才能更好地发现并解决模型存在的问题,从而更好地解决实际业务场景中遇到的问题。

N E R 精 确 率 P r e c i s i o n = 识 别 出 正 确 的 实 体 数 识 别 出 的 实 体 数 NER精确率\quad Precision=\cfrac{识别出正确的实体数}{识别出的实体数} NERPrecision=?

N E R 召 回 率 R e c a l l = 识 别 出 正 确 的 实 体 数 样 本 中 真 实 实 体 数 NER召回率\quad Recall=\cfrac{识别出正确的实体数}{样本中真实实体数} NERRecall=?

两者的取值都在 0 和 1 之间,数值越接近1,精确率或召回率就越高。

精确率和召回率有时会出现矛盾的情况,这是需要综合考虑它们的加权调和平均值,也就是* F 值*,其中最常用的 F1 值,当 F1 值较高时说明试验方法比较有效。F1 值定义如下:

F1值 = (2 * 精确率 * 召回率)/(精确率 + 召回率)




参考资料:
命名实体识别的评价指标

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-01-29 23:05:20  更:2022-01-29 23:06:45 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 16:08:04-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码