IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 《天池龙珠 - 机器学习训练营》01.机器学习算法: 基于逻辑回归的分类预测 学习笔记 -> 正文阅读

[人工智能]《天池龙珠 - 机器学习训练营》01.机器学习算法: 基于逻辑回归的分类预测 学习笔记

本学习笔记为阿里云天池龙珠计划Docker训练营的学习内容,学习链接为:https://tianchi.aliyun.com/specials/promotion/aicampml

一、学习知识点概要

1.1 逻辑回归模型的介绍

逻辑回归(Logistic regression,简称LR)虽然其中带有"回归"两个字,但逻辑回归其实是一个分类模型,并且广泛应用于各个领域之中。虽然现在深度学习相对于这些传统方法更为火热,但实则这些传统方法由于其独特的优势依然广泛应用于各个领域中。

而对于逻辑回归而且,最为突出的两点就是其模型简单模型的可解释性强

逻辑回归模型的优劣势:

优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低;
缺点:容易欠拟合,分类精度可能不高

1.2 代码实现流程

这里主要分为两部分。一部分使用手动输入的一组坐标点进行训练学习,掌握scikit-learn库中逻辑回归模型的基本使用方法和函数(方法)的使用;第二部分是导入了经典的鸢尾花数据集,然后对其进行二分类多分类模型的训练和预测。
其中代码实现流程中,采用了一些可视化的库,将数据花在图表中,数据更加直观。

二、学习内容

由于本科阶段学习过相关内容,本次为复习,所以只简单概述复习中学习或者值得注意的地方,本专栏的后面博客内容也都是如此,后面就不赘述。

导入逻辑回归模型库是从sklearnlinear_model包下导入LogisticRegression
首先创建LogisticRegression实例lr_clf,接着通过fit方法训练数据集,通过coef_方法查看对应模型的w通过intercept_方法查看对应模型的w0。多分类模型也是如此。通过metrics.accuracy_score来计算预测的准确度。 Logistic 函数的特性和取值。

三、学习问题与解答

【问题描述】: 这里遇到了一个问题,通过官方的notbook文档执行,可以看到 可视化预测新样本 时会抛出一个错误提示:
在这里插入图片描述
【解决方案】: 由于版本迭代的问题,参数s已经不再使用,更改为text就不会出现问题。
在这里插入图片描述

四、学习思考与总结

本节让我回顾了本科学习的机器学习逻辑回归模型,回顾了scikit-learn库的使用,同时,之前没有使用过coef_intercept_方法,在本次学习中,了解和掌握了查看训练模型模拟出的w和w0的方法。
同时回顾了可视化数据的展示方法。收获满满~

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-01-29 23:05:20  更:2022-01-29 23:08:27 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 16:17:10-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码