IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> hugginface-introduction 案例介绍 -> 正文阅读

[人工智能]hugginface-introduction 案例介绍

前言

如果要实战,肯定第一个考虑的库就是transformers, 关于transformers的用法可以参考这个视频,是个外国的小哥, 很短很实用。
【双语字幕+资料下载】Hugging Face速成指南!一遍搞定NLP任务中最常用的功能板块<实战教程系列>

本文就是根据这个视频进行实验的。
首先,如果没有 transformers库的话,先执行

pip install transformers



Pipeline

这个仅用于一些常规任务,自己想简单处理就行,不求定制什么模型,以及不需要finetune的场景下使用。

from transformers import pipeline
classifier = pipeline("sentiment-analysis")
res = classifier("We are very happy to show you the Transformers library.")
print(res)

可以看到默认使用的模型是 distilbert-base-uncased-finetuned-sst-2-english, 输出结果:
[{‘label’: ‘POSITIVE’, ‘score’: 0.9997994303703308}]



多个输入样例:

classifier = pipeline("sentiment-analysis")
res = classifier(["We are very happy to show you the Transformers library.", 
          "We hope you don't hate it."])
print(res)

输出:
[{‘label’: ‘POSITIVE’, ‘score’: 0.9997994303703308}, {‘label’: ‘NEGATIVE’, ‘score’: 0.5308617353439331}]


指定模型:

model_name = 'distilbert-base-uncased-finetuned-sst-2-english'

classifier = pipeline("sentiment-analysis", model=model_name)
res = classifier(["We are very happy to show you the Transformers library.", 
          "We hope you don't hate it."])
print(res)

输出:
[{‘label’: ‘POSITIVE’, ‘score’: 0.9997994303703308}, {‘label’: ‘NEGATIVE’, ‘score’: 0.5308617353439331}]


定制分词器和模型

from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForSequenceClassification

model_name = 'distilbert-base-uncased-finetuned-sst-2-english'

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
res = classifier(["We are very happy to show you the Transformers library.", 
          "We hope you don't hate it."])
print(res)

输出:
[{‘label’: ‘POSITIVE’, ‘score’: 0.9997994303703308}, {‘label’: ‘NEGATIVE’, ‘score’: 0.5308617353439331}]


tokenizer

from transformers import AutoTokenizer

这个是分词器,我们需要把文本转化为适合模型输入的向量。(bert家族的话是input_ids和attention_mask, 注意input_ids是不需要 onehot 处理的)

tokens = tokenizer.tokenize('We are very happy to show you the Transformers library.')
token_ids = tokenizer.convert_tokens_to_ids(tokens)

print(f'tokens: {tokens}')
print(f'token_ids: {token_ids}')

tokens: [‘we’, ‘are’, ‘very’, ‘happy’, ‘to’, ‘show’, ‘you’, ‘the’, ‘transformers’, ‘library’, ‘.’]
token_ids: [2057, 2024, 2200, 3407, 2000, 2265, 2017, 1996, 19081, 3075, 1012]

可以看到, tokenize方法就是分词, convert_tokens_to_ids就是分完的token转化为id。


来看下另一个例子,可以看到我们根据输出就可以发现,该方式的输出 即input是一个字典,该字典可以解包后作为model的输入。

input = tokenizer("We are very happy to show you the Transformers library.")
print(input)

{‘input_ids’: [101, 2057, 2024, 2200, 3407, 2000, 2265, 2017, 1996, 19081, 3075, 1012, 102], ‘attention_mask’: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}


一个batch多个样例, 其中padding是指填充的意思,例如第二句句子长度不足,则会补上0 (通常是0)进行填充。

train_x = ["We are very happy to show you the Transformers library.", 
       "We hope you don't hate it."]

batch = tokenizer(train_x, padding=True, truncation=True, max_length=512, return_tensors='pt')
print(batch)

{‘input_ids’: tensor([[ 101, 2057, 2024, 2200, 3407, 2000, 2265, 2017, 1996, 19081,
3075, 1012, 102],
[ 101, 2057, 3246, 2017, 2123, 1005, 1056, 5223, 2009, 1012,
102, 0, 0]]), ‘attention_mask’: tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]])}

不指定返回是pytorch.tensor类型

train_x = ["We are very happy to show you the Transformers library.", 
       "We hope you don't hate it."]

batch = tokenizer(train_x, padding=True, truncation=True, max_length=512)
print(batch)

{‘input_ids’: [[101, 2057, 2024, 2200, 3407, 2000, 2265, 2017, 1996, 19081, 3075, 1012, 102], [101, 2057, 3246, 2017, 2123, 1005, 1056, 5223, 2009, 1012, 102, 0, 0]], ‘attention_mask’: [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]}


inference

利用model进行分类, 这里我们仅做推导,稍后介绍如何finetue。

model_name = 'distilbert-base-uncased-finetuned-sst-2-english'

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

train_x = ["We are very happy to show you the Transformers library.", 
       "We hope you don't hate it."]

batch = tokenizer(train_x, padding=True, truncation=True, max_length=512, return_tensors='pt')

with torch.no_grad():
  outputs = model(**batch)
  predictions = F.softmax(outputs.logits, dim=-1)
  labels = torch.argmax(predictions, dim=-1)
  labels_en = [model.config.id2label[label_id] for label_id in labels.tolist()]

print('outputs:\n', outputs)
print('predictions:\n', predictions)
print('labels:', labels)
print('labels_en:', labels_en)

outputs:
SequenceClassifierOutput(loss=None, logits=tensor([[-4.1329, 4.3811],
[ 0.0818, -0.0418]]), hidden_states=None, attentions=None)
predictions:
tensor([[2.0060e-04, 9.9980e-01],
[5.3086e-01, 4.6914e-01]])
labels: tensor([1, 0])
labels_en: [‘POSITIVE’, ‘NEGATIVE’]



这里我们注意到上面的loss没有损失,这里我们再添加一个ground truth

# 有损失
model_name = 'distilbert-base-uncased-finetuned-sst-2-english'

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

train_x = ["We are very happy to show you the Transformers library.", 
       "We hope you don't hate it."]
train_y = [1, 0]

batch = tokenizer(train_x, padding=True, truncation=True, max_length=512, return_tensors='pt')

with torch.no_grad():
  outputs = model(**batch, labels=torch.tensor(train_y))
  predictions = F.softmax(outputs.logits, dim=-1)
  labels = torch.argmax(predictions, dim=-1)
  labels_en = [model.config.id2label[label_id] for label_id in labels.tolist()]

print('outputs:\n', outputs)
print('predictions:\n', predictions)
print('labels:', labels)
print('labels_en:', labels_en)

outputs:
SequenceClassifierOutput(loss=tensor(0.3167), logits=tensor([[-4.1329, 4.3811],
[ 0.0818, -0.0418]]), hidden_states=None, attentions=None)
predictions:
tensor([[2.0060e-04, 9.9980e-01],
[5.3086e-01, 4.6914e-01]])
labels: tensor([1, 0])
labels_en: [‘POSITIVE’, ‘NEGATIVE’]



这里其实tokenizer不是返回的字典里的元素不是torch.tensor类型也可以

# 有损失
model_name = 'distilbert-base-uncased-finetuned-sst-2-english'

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

train_x = ["We are very happy to show you the Transformers library.", 
       "We hope you don't hate it."]

batch_dict = tokenizer(train_x, padding=True, truncation=True, max_length=512)
print('batch_dict:', batch_dict)
batch = torch.tensor(batch_dict['input_ids'])
print('batch:', batch_dict)


with torch.no_grad():
  outputs = model(batch)
  predictions = F.softmax(outputs.logits, dim=-1)
  labels = torch.argmax(predictions, dim=-1)
  labels_en = [model.config.id2label[label_id] for label_id in labels.tolist()]

print('outputs:\n', outputs)
print('predictions:\n', predictions)
print('labels:', labels)
print('labels_en:', labels_en)

batch_dict: {‘input_ids’: [[101, 2057, 2024, 2200, 3407, 2000, 2265, 2017, 1996, 19081, 3075, 1012, 102], [101, 2057, 3246, 2017, 2123, 1005, 1056, 5223, 2009, 1012, 102, 0, 0]], ‘attention_mask’: [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]}
batch: {‘input_ids’: [[101, 2057, 2024, 2200, 3407, 2000, 2265, 2017, 1996, 19081, 3075, 1012, 102], [101, 2057, 3246, 2017, 2123, 1005, 1056, 5223, 2009, 1012, 102, 0, 0]], ‘attention_mask’: [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]}
outputs:
SequenceClassifierOutput(loss=None, logits=tensor([[-4.1329, 4.3811],
[ 1.5112, -1.3358]]), hidden_states=None, attentions=None)
predictions:
tensor([[2.0060e-04, 9.9980e-01],
[9.4517e-01, 5.4834e-02]])
labels: tensor([1, 0])
labels_en: [‘POSITIVE’, ‘NEGATIVE’]



加上label, 我们关注一下loss, 可以看到没有传入attention_mask其实loss的结果是不同的,尽管输出的标签一样

# 有损失
model_name = 'distilbert-base-uncased-finetuned-sst-2-english'

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

train_x = ["We are very happy to show you the Transformers library.", 
       "We hope you don't hate it."]
train_y = [1, 0]

batch_dict = tokenizer(train_x, padding=True, truncation=True, max_length=512)
print('batch_dict:', batch_dict)
batch = torch.tensor(batch_dict['input_ids'])
print('batch:', batch_dict)


with torch.no_grad():
  outputs = model(batch, labels=torch.tensor(train_y))
  predictions = F.softmax(outputs.logits, dim=-1)
  labels = torch.argmax(predictions, dim=-1)
  labels_en = [model.config.id2label[label_id] for label_id in labels.tolist()]

print('outputs:\n', outputs)
print('predictions:\n', predictions)
print('labels:', labels)
print('labels_en:', labels_en)

batch_dict: {‘input_ids’: [[101, 2057, 2024, 2200, 3407, 2000, 2265, 2017, 1996, 19081, 3075, 1012, 102], [101, 2057, 3246, 2017, 2123, 1005, 1056, 5223, 2009, 1012, 102, 0, 0]], ‘attention_mask’: [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]}
batch: {‘input_ids’: [[101, 2057, 2024, 2200, 3407, 2000, 2265, 2017, 1996, 19081, 3075, 1012, 102], [101, 2057, 3246, 2017, 2123, 1005, 1056, 5223, 2009, 1012, 102, 0, 0]], ‘attention_mask’: [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]}
outputs:
SequenceClassifierOutput(loss=tensor(0.0283), logits=tensor([[-4.1329, 4.3811],
[ 1.5112, -1.3358]]), hidden_states=None, attentions=None)
predictions:
tensor([[2.0060e-04, 9.9980e-01],
[9.4517e-01, 5.4834e-02]])
labels: tensor([1, 0])
labels_en: [‘POSITIVE’, ‘NEGATIVE’]



save & load

保存模型

import os
from transformers import AutoTokenizer, AutoModelForSequenceClassification

model_name = 'distilbert-base-uncased-finetuned-sst-2-english'

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

保存权重, 到指定文件夹

save_dir = 'save_dir'

if os.path.exists(save_dir):
  os.mkdir(save_dir)

tokenizer.save_pretrained(save_dir)
model.save_pretrained(save_dir)


下次进行加载

load_tokenizer = AutoTokenizer.from_pretrained(save_dir)
load_model = AutoModelForSequenceClassification.from_pretrained(save_dir)



fine-tune

from pathlib import Path
from sklearn.model_selection import train_test_split
import torch
from torch.utils.data import Dataset
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
from transformers import Trainer, TrainingArguments

def read_imdb_split(split_dir):
  split_dir = Path(split_dir)
  texts = []
  labels = []
  for label_dir in ['pos', 'neg']:
    for text_file in (split_dir/label_dir).iterdir():
      texts.append(text_file.read_text())
      labels.append(0 if label_dir == 'neg' else 1)
  return texts, labels

下载数据集

# http://ai.stanford.edu/~amaas/data/sentiment
!wget https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz

解压数据集

!tar -zxvf /content/aclImdb_v1.tar.gz


读取数据集

train_texts, train_labels = read_imdb_split('/content/aclImdb/train')
test_texts, test_labels = read_imdb_split('/content/aclImdb/test')
print('train_texts.len:', len(train_texts))
print('test_texts.len: ', len(test_texts))

train_texts.len: 25000
test_texts.len: 25000


分一部分作于验证

train_texts, val_texts, train_labels, val_labels = train_test_split(train_texts, train_labels, test_size=0.2)
print('train_texts.len:', len(train_texts))
print('val_texts.len: ', len(val_texts))

train_texts.len: 12800
val_texts.len: 3200


class IMDbDataset(Dataset):
  def __init__(self, encodings, labels):
    self.encodings = encodings
    self.labels = labels
  
  def __getitem__(self, idx):
    item = {key:torch.tensor(val[idx]) for key, val in self.encodings.items()}
    item['labels'] = torch.tensor(self.labels[idx])
    return item

  def __len__(self):
    return len(self.labels)



model_name = 'distilbert-base-uncased-finetuned-sst-2-english'

tokenizer = DistilBertTokenizer.from_pretrained(model_name)

train_encodings = tokenizer(train_texts, truncation=True, padding=True)
val_encodings = tokenizer(val_texts, truncation=True, padding=True)
test_encodings = tokenizer(test_texts, truncation=True, padding=True)



train_dataset = IMDbDataset(train_encodings, train_labels)
val_dataset = IMDbDataset(val_encodings, val_labels)
test_dataset = IMDbDataset(test_encodings, test_labels)

trainer写法

设置训练的超参数

training_args = TrainingArguments(
  output_dir = './results',
  num_train_epochs=2,
  per_device_train_batch_size=16,
  per_device_eval_batch_size=64,
  warmup_steps=500,
  learning_rate=5e-5,
  weight_decay=0.01,
  logging_dir='./logs',
  logging_steps=10
)



加载模型

model = DistilBertForSequenceClassification.from_pretrained(model_name)

加载训练器

trainer = Trainer(
  model=model,
  args=training_args,
  train_dataset=train_dataset,
  eval_dataset=val_dataset
)

开始训练

trainer.train()



native pytorch写法

from torch.utils.data import DataLoader
from transformers import AdamW

device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
print(device)

加载模型

model = DistilBertForSequenceClassification.from_pretrained(model_name)
model.to(device)
model.train()

定义数据Loader类

train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)

实例化优化器和设置epoch数量

optim = AdamW(model.parameters(), lr=5e-5)
num_train_epochs = 2

for epoch in range(num_train_epochs):
  for batch in train_loader:
    optim.zero_grad()
    input_ids = batch['input_ids'].to(device)
    attention_mask = batch['attention_mask'].to(device)
    labels = batch['labels'].to(device)

    outputs = model(input_ids, attention_mask=attention_mask, labels=labels)

    loss = outputs[0]
    print('epoch:{}, batch:{}, loss:{}'.format(epoch, batch, loss))
    loss.backward()
    optim.step()
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-02-04 11:02:36  更:2022-02-04 11:03:30 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 11:36:50-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码