IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> GRU(门控循环单元),易懂。 -> 正文阅读

[人工智能]GRU(门控循环单元),易懂。

一、什么是GRU?

GRU(Gate Recurrent Unit)是循环神经网络(RNN)的一种,可以解决RNN中不能长期记忆和反向传播中的梯度等问题,与LSTM的作用类似,不过比LSTM简单,容易进行训练。

二、GRU详解

GRU模型中有两个门,重置门和更新门,具体作用后面展开说。

先来看一张GRU的图,看不懂没关系,后面慢慢展开说。

符号说明:

x_{t}:当前时刻输入信息

h_{t-1}:上一时刻的隐藏状态,这个隐藏状态包含了之前节点的相关信息。

h_{t}:传递到下一时刻的隐藏状态

\tilde{h}_{_{t}}:候选隐藏状态

r_{t}:重置门

z_{t}:更新门

\sigma:sigmoid函数,通过这个函数可以将数据变为0-1范围的数值。

tanh: tanh函数,通过这个函数可以将数据变为[-1,1]范围的数值

先不看内部具体的复杂关系,将上图简化为下图:

?结合x_{t}?和?h_{t-1},GRU会得到当前隐藏节点的输出y_{t}和传递给下一个节点的隐藏状态h_{t},这个h_{t}?

的推导是GRU的关键所在,我们看一下GRU所用到的公式:

这四个公式互有关联,并不是单独去使用,下面我们详细展开。

1. 重置门

?重置门决定了如何将新的输入信息与前面的记忆相结合,这句话猛的一看也不好理解,我们再继续拆解。

?

?将这个图片转化为公式就是重置门的公式:

这里W_{r}并不是一个值,而是一个权重矩阵。可以将此公式展开:

用这个权重矩阵对x_{t}h_{t-1}拼接而成的矩阵进行线性变换(两个矩阵相乘)。然后将两个矩阵相乘得到的值投入sigmoide函数,会得到r_{t}的值,比如:0.6 。这个值会用到候选隐藏状态的公式中,即下面这个公式:

?为了方便理解,我们将这个公式展开:

\tilde{h}_{t}=tanh(x_{t} W_{xh}+(r_{t}\bigodot h_{t-1})W_{hh}+b_{h})

下面便是重点:

r_{t}的值越小,它与h_{t-1}哈达玛积出来的矩阵数值越小,再与权重矩阵相乘得到的值越小,也就是这个值越小,

说明上一时刻需要遗忘的越多,丢弃的越多。

r_{t}的值越大,?它与h_{t-1}哈达玛积出来的矩阵数值越大,再与权重矩阵相乘得到的值越大,说明上一时刻需要记住的越多,新的输入信息(也就是当前的输入信息x_{t})与前面的记忆相结合的越多。

r_{t}的值接近0时,值也接近为0,说明上一时刻的内容需要全部丢弃,只保留当前时刻的输入,所以可以用来丢弃与预测无关的历史信息。

r_{t}的值接近1时,值也接近为1,表示保留上一时刻的隐藏状态。?

这就是重置门的作用,有助于捕捉时间序列里短期的依赖关系。

2.更新门

?更新门用于控制前一时刻的状态信息被带入到当前状态中的程度,也就是更新门帮助模型决定到底要将多少过去的信息传递到未来,简单来说就是用于更新记忆。结合下面两个公式比较好理解:

更新门公式:

?

更新记忆表达式:

?z_{t}越接近1,代表”记忆“下来的数据越多;而越接近0则代表”遗忘“的越多。

?:表示对上一时刻隐藏状态进行选择性“遗忘”。忘记h_{t-1}中一些不重要的信息,把不相关的丢弃。

:表示对候选隐藏状态的进一步选择性”记忆“。会忘记?\tilde{h}_{_{t}}中的一些不重要的信息。也就是对\tilde{h}_{_{t}}中的某些信息进一步选择。

综上,

?h_{t}忘记传递下来的?h_{t-1}中的某些信息,并加入当前节点输入的某些信息。这就是最终的记忆。

门控循环单元GRU不会随时间而清除以前的信息,它会保留相关的信息并传递到下一个单元。

参考资料:

人人都能看懂的GRU - 知乎 (zhihu.com)

?GRU学习总结_哔哩哔哩_bilibili

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-02-04 11:02:36  更:2022-02-04 11:03:33 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 11:42:52-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码