| |
|
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
| -> 人工智能 -> Windows下torch_geometric的CPU版本安装 -> 正文阅读 |
|
|
[人工智能]Windows下torch_geometric的CPU版本安装 |
|
学习GNN的时候尝试在线安装torch_geometric ,自己安装过程中出现了挺多问题,找到官网后按照其指示最后成功在线安装(官网链接:torch-geometric · PyPI?) 以下是我的安装流程: 先激活环境: conda activate py37 由于我安装的是:PyTorch 1.10.0,故需要执行以下的操作:
按照官网上的说明,以下为选择性安装部分(torch-cluster和torch-spline-conv):
? ? 最后我们测试一下是否成功安装: 测试代码如下:(直接利用官网上提供的测试代码) import torch
from torch import Tensor
from torch.nn import Sequential, Linear, ReLU
from torch_geometric.nn import MessagePassing
class EdgeConv(MessagePassing):
def __init__(self, in_channels, out_channels):
super().__init__(aggr="max") # "Max" aggregation.
self.mlp = Sequential(
Linear(2 * in_channels, out_channels),
ReLU(),
Linear(out_channels, out_channels),
)
def forward(self, x: Tensor, edge_index: Tensor) -> Tensor:
# x: Node feature matrix of shape [num_nodes, in_channels]
# edge_index: Graph connectivity matrix of shape [2, num_edges]
return self.propagate(edge_index, x=x) # shape [num_nodes, out_channels]
def message(self, x_j: Tensor, x_i: Tensor) -> Tensor:
# x_j: Source node features of shape [num_edges, in_channels]
# x_i: Target node features of shape [num_edges, in_channels]
edge_features = torch.cat([x_i, x_j - x_i], dim=-1)
return self.mlp(edge_features) # shape [num_edges, out_channels]
运行结果如下:
Bingo!? |
|
|
|
|
| 上一篇文章 下一篇文章 查看所有文章 |
|
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
| 360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年12日历 | -2025/12/8 6:56:02- |
|
| 网站联系: qq:121756557 email:121756557@qq.com IT数码 |