参考文献
[1] Fitzgion A W. Robust registration of 2D and 3D point setsJ. Image and Vision Computing, 2003.
[2]三维重建的自适应列文伯格-马夸尔点云配准方法
[3]基于Kinect的双目视觉场景三维重建
2.代码实现
.h
#pragma once
#include <pcl/filters/random_sample.h>//采取固定数量的点云
#include <pcl/visualization/pcl_visualizer.h>
#include <boost/thread/thread.hpp>
void sample_point(pcl::PointCloud<pcl::PointXYZ>::Ptr& cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr& cloud_rsf, double count = 1000);
void visualize_registration(pcl::PointCloud<pcl::PointXYZ>::Ptr& source, pcl::PointCloud<pcl::PointXYZ>::Ptr& target,
pcl::PointCloud<pcl::PointXYZ>::Ptr& icp);
.cpp
#include"lmicp.h"
void sample_point(pcl::PointCloud<pcl::Poi
|