IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 我的第一次知识图谱问答 -> 正文阅读

[人工智能]我的第一次知识图谱问答

这次想写一个知识图谱问答系列,从文本读取的知识图谱元素到智能处理的对话问答系统,涉及到实体识别、意图识别、槽位提取等技术。这里解释一下名词的含义。

实体识别:这个一般处理是正则表达式,或者是训练分类也就是BIO标签tag+softmax....有些人说是前者规则,后者学习。哈哈哈都行~~~

意图识别:就是判别这个问题是什么类型的问题,表示什么意思。比如,感冒可以吃什么药。我们可以知道这个问题是根据病来查吃什么药。。

槽位提取:就是对提的问题关键词进行提取,问题的关键词就是需要提取的槽位,上面一个例子,感冒就是槽位。

在介绍简单的概念后,正式开始今天的知识。主要步骤就是:构建图谱、分析问题类型(分类)、提取槽位、查询图谱。

一、构建图谱?

初始化与neo4j的连接

def __init__(self):
        cur_dir = '\\'.join(os.path.abspath(__file__).split('\\')[:-1])   # 获取当前绝对路径的上层目录 linux中应用'/'split和join
        self.data_path = os.path.join(cur_dir, 'data\hepatopathy.json')   # 获取json文件路径
        self.g = Graph(
            host="localhost",  # neo4j 搭载服务器的ip地址,ifconfig可获取到
            http_port=7474,  # neo4j 服务器监听的端口号
            user="neo4j",  # 数据库user name,如果没有更改过,应该是neo4j
            password="neo4jneo4j")

?读取数据文件

'''读取文件'''
    def read_nodes(self):
        # 共7类节点
        drugs = [] # 药品
        foods = [] # 食物
        checks = [] # 检查
        departments = [] #科室
        producers = [] #药品大类
        diseases = [] #疾病
        symptoms = []#症状

        disease_infos = []#疾病信息

        # 构建节点实体关系 共11类
        rels_department = [] # 科室-科室关系(属于)
        rels_noteat = [] # 疾病-忌吃食物关系
        rels_doeat = [] # 疾病-宜吃食物关系
        rels_recommandeat = [] # 疾病-推荐吃食物关系
        rels_commonddrug = [] # 疾病-通用(常用)药品关系
        rels_recommanddrug = [] # 疾病-热门(推荐)药品关系
        rels_check = [] # 疾病-检查关系
        rels_drug_producer = [] # 厂商-药物关系

        rels_symptom = [] #疾病症状关系
        rels_acompany = [] # 疾病并发关系
        rels_category = [] # 疾病与科室之间的关系


        count = 0
        for data in open(self.data_path,encoding='utf-8'):   # 逐行读取
            disease_dict = {}
            count += 1
            print(count)
            data_json = json.loads(data)
            disease = data_json['name']
            disease_dict['name'] = disease
            diseases.append(disease)
            disease_dict['desc'] = ''
            disease_dict['prevent'] = ''
            disease_dict['cause'] = ''
            disease_dict['easy_get'] = ''
            disease_dict['cure_department'] = ''
            disease_dict['cure_way'] = ''
            disease_dict['cure_lasttime'] = ''
            disease_dict['symptom'] = ''
            disease_dict['cured_prob'] = ''

            if 'symptom' in data_json:
                symptoms += data_json['symptom']     # +号用于组合列表
                for symptom in data_json['symptom']:            # 对于每个症状都建立一个疾病——症状的关系
                    rels_symptom.append([disease, symptom])

            if 'acompany' in data_json:
                for acompany in data_json['acompany']:
                    rels_acompany.append([disease, acompany])

            if 'desc' in data_json:
                disease_dict['desc'] = data_json['desc']

            if 'prevent' in data_json:
                disease_dict['prevent'] = data_json['prevent']

            if 'cause' in data_json:
                disease_dict['cause'] = data_json['cause']

            if 'get_prob' in data_json:
                disease_dict['get_prob'] = data_json['get_prob']

            if 'get_way' in data_json:
                disease_dict['get_way'] = data_json['get_way']
            else:
                disease_dict['get_way'] = '不知'

            if 'easy_get' in data_json:
                disease_dict['easy_get'] = data_json['easy_get']

            if 'can_eat' in data_json:
                disease_dict['can_eat'] = data_json['can_eat']
            # else:
            #     disease_dict['can_eat'] = '不知'

            if 'cure_department' in data_json:
                cure_department = data_json['cure_department']
                if len(cure_department) == 1:
                     rels_category.append([disease, cure_department[0]])
                if len(cure_department) == 2:
                    big = cure_department[0]
                    small = cure_department[1]
                    rels_department.append([small, big])      # 提取科室——科室关系
                    rels_category.append([disease, small])

                disease_dict['cure_department'] = cure_department
                departments += cure_department

            if 'cure_way' in data_json:
                disease_dict['cure_way'] = data_json['cure_way']

            if  'cure_lasttime' in data_json:
                disease_dict['cure_lasttime'] = data_json['cure_lasttime']

            if 'cured_prob' in data_json:
                disease_dict['cured_prob'] = data_json['cured_prob']

            if 'common_drug' in data_json:
                common_drug = data_json['common_drug']
                for drug in common_drug:
                    rels_commonddrug.append([disease, drug])
                drugs += common_drug

            if 'recommand_drug' in data_json:
                recommand_drug = data_json['recommand_drug']
                drugs += recommand_drug
                for drug in recommand_drug:
                    rels_recommanddrug.append([disease, drug])

            if 'not_eat' in data_json:
                not_eat = data_json['not_eat']
                for _not in not_eat:
                    rels_noteat.append([disease, _not])

                foods += not_eat

            if 'do_eat' in data_json:
                do_eat = data_json['do_eat']
                for _do in do_eat:
                    rels_doeat.append([disease, _do])

                foods += do_eat

            if 'recommand_eat' in data_json:
                recommand_eat = data_json['recommand_eat']

                for _recommand in recommand_eat:
                    rels_recommandeat.append([disease, _recommand])
                foods += recommand_eat

            if 'check' in data_json:
                check = data_json['check']
                for _check in check:
                    rels_check.append([disease, _check])
                checks += check

            if 'drug_detail' in data_json:
                drug_detail = data_json['drug_detail']
                producer = [i.split('(')[0] for i in drug_detail]
                rels_drug_producer += [[i.split('(')[0], i.split('(')[-1].replace(')', '')] for i in drug_detail]
                producers += producer

            disease_infos.append(disease_dict)

        return set(drugs), set(foods), set(checks), set(departments), set(producers), set(symptoms), set(diseases), disease_infos,\
               rels_check, rels_recommandeat, rels_noteat, rels_doeat, rels_department, rels_commonddrug, rels_drug_producer, rels_recommanddrug,\
               rels_symptom, rels_acompany, rels_category

最后得到的就是,所有的实体,以及数据库关系而形成的实体间关系。这些字典数据将用于构建知识图谱。

set(drugs), set(foods), set(checks), set(departments), set(producers), set(symptoms), set(diseases), disease_infos,\
               rels_check, rels_recommandeat, rels_noteat, rels_doeat, rels_department, rels_commonddrug, rels_drug_producer, rels_recommanddrug,\
               rels_symptom, rels_acompany, rels_category

建立节点、节点边的两个函数

'''创建知识图谱实体节点类型schema'''
    def create_graphnodes(self):
        Drugs, Foods, Checks, Departments, Producers, Symptoms, Diseases, disease_infos,rels_check, rels_recommandeat, rels_noteat, rels_doeat, rels_department, rels_commonddrug, rels_drug_producer, rels_recommanddrug,rels_symptom, rels_acompany, rels_category = self.read_nodes()
        self.create_diseases_nodes(disease_infos)
        self.create_node('Drug', Drugs)
        print(len(Drugs))
        self.create_node('Food', Foods)
        print(len(Foods))
        self.create_node('Check', Checks)
        print(len(Checks))
        self.create_node('Department', Departments)
        print(len(Departments))
        self.create_node('Producer', Producers)
        print(len(Producers))
        self.create_node('Symptom', Symptoms)
        return


    '''创建实体关系边'''
    def create_graphrels(self):
        Drugs, Foods, Checks, Departments, Producers, Symptoms, Diseases, disease_infos, rels_check, rels_recommandeat, rels_noteat, rels_doeat, rels_department, rels_commonddrug, rels_drug_producer, rels_recommanddrug,rels_symptom, rels_acompany, rels_category = self.read_nodes()
        self.create_relationship('Disease', 'Food', rels_recommandeat, 'recommand_eat', '推荐食谱')
        self.create_relationship('Disease', 'Food', rels_noteat, 'no_eat', '忌吃')
        self.create_relationship('Disease', 'Food', rels_doeat, 'do_eat', '宜吃')
        self.create_relationship('Department', 'Department', rels_department, 'belongs_to', '属于')
        self.create_relationship('Disease', 'Drug', rels_commonddrug, 'common_drug', '常用药品')
        self.create_relationship('Producer', 'Drug', rels_drug_producer, 'drugs_of', '生产药品')
        self.create_relationship('Disease', 'Drug', rels_recommanddrug, 'recommand_drug', '好评药品')
        self.create_relationship('Disease', 'Check', rels_check, 'need_check', '诊断检查')
        self.create_relationship('Disease', 'Symptom', rels_symptom, 'has_symptom', '症状')
        self.create_relationship('Disease', 'Disease', rels_acompany, 'acompany_with', '并发症')
        self.create_relationship('Disease', 'Department', rels_category, 'belongs_to', '所属科室')

其中涉及创建节点方法,通过py建立知识图谱。这里采用Node定义节点、create在neo4j中创建。——直接用Node创建

'''建立节点'''
    def create_node(self, label, nodes):
        count = 0
        for node_name in nodes:
            node = Node(label, name=node_name)
            self.g.create(node)
            count += 1
            print(label, count, len(nodes))
        return

    '''创建知识图谱中心疾病的节点'''
    def create_diseases_nodes(self, disease_infos):
        count = 0
        for disease_dict in disease_infos:
            node = Node("Disease", name=disease_dict['name'], desc=disease_dict['desc'],
                        prevent=disease_dict['prevent'] ,cause=disease_dict['cause'],
                        get_way=disease_dict['get_way'] , easy_get=disease_dict['easy_get'],cure_lasttime=disease_dict['cure_lasttime'],
                        cure_department=disease_dict['cure_department']
                        ,cure_way=disease_dict['cure_way'] , cured_prob=disease_dict['cured_prob'])
            self.g.create(node)
            count += 1
            print(count)
        return

创建边的方法,通过query方法,首先"match(p:%s),(q:%s) where p.name='%s' and? q.name='%s'匹配到两边节点,然后create (p)-[rel:%s{name:'%s'}]->(q)"创建边。——采用run query的方法创建。

    '''创建实体关联边'''
    def create_relationship(self, start_node, end_node, edges, rel_type, rel_name):
        count = 0
        # 去重处理
        set_edges = []
        for edge in edges:
            set_edges.append('###'.join(edge))
        # print(set_edges)
        all = len(set(set_edges))
        for edge in set(set_edges):
            edge = edge.split('###')
            p = edge[0]
            q = edge[1]
            query = "match(p:%s),(q:%s) where p.name='%s'and q.name='%s' create (p)-[rel:%s{name:'%s'}]->(q)" % (
                start_node, end_node, p, q, rel_type, rel_name)
            try:
                self.g.run(query)
                count += 1
                print(rel_type, count, all)
            except Exception as e:
                print(e)
        return
if __name__ == '__main__':
    handler = MedicalGraph()

    handler.create_graphnodes()
    handler.create_graphrels()

二、问题分类+槽位提取

就是对输入的文字判断其问题类型是什么。同时会提取对应实体的名称,也就是槽位。

步骤 1:输入文字,判断实体

步骤 2:判断意图,问题分类

步骤 3:组装json,送给search

步骤1:输入文字,判断实体

'''分类主函数'''
    def classify(self, question):
        data = {}
        medical_dict = self.check_medical(question)
        if not medical_dict:
            if 'diseases_dict' in globals():    # 判断是否是首次提问,若首次提问,则diseases_dict无值
                medical_dict = diseases_dict
            else:
                return {}
        print("medical_dict : ", medical_dict)
        data['args'] = medical_dict
        #收集问句当中所涉及到的实体类型
        types = []
        for type_ in medical_dict.values():
            types += type_
        # print(types)
        question_types = []

        # 症状
        if self.check_words(self.symptom_qwds, question) and ('disease' in types):
            question_type = 'disease_symptom'
            question_types.append(question_type)

        if self.check_words(self.symptom_qwds, question) and ('symptom' in types):
            question_type = 'symptom_disease'
            question_types.append(question_type)

        # 原因
        if self.check_words(self.cause_qwds, question) and ('disease' in types):
            question_type = 'disease_cause'
            question_types.append(question_type)

        # 并发症
        if self.check_words(self.acompany_qwds, question) and ('disease' in types):
            question_type = 'disease_acompany'
            question_types.append(question_type)

        # 推荐食品
        if self.check_words(self.food_qwds, question) and 'disease' in types:
            deny_status = self.check_words(self.deny_words, question)
            if deny_status:
                question_type = 'disease_not_food'
            else:
                question_type = 'disease_do_food'
            if self.check_words(['能吃','能喝','可以吃','可以喝'], question):
                question_types.append('disease_can_eat')
            print(question_type)
            question_types.append(question_type)

        #已知食物找疾病
        if self.check_words(self.food_qwds+self.cure_qwds, question) and 'food' in types and 'disease' not in types:
            deny_status = self.check_words(self.deny_words, question)
            if deny_status:
                question_type = 'food_not_disease'
            else:
                question_type = 'food_do_disease'
            question_types.append(question_type)

        # 推荐药品
        if self.check_words(self.drug_qwds, question) and 'disease' in types:
            question_type = 'disease_drug'
            question_types.append(question_type)

        # 药品治啥病
        if self.check_words(self.cure_qwds, question) and 'drug' in types:
            question_type = 'drug_disease'
            question_types.append(question_type)

        # 疾病接受检查项目
        if self.check_words(self.check_qwds, question) and 'disease' in types:
            question_type = 'disease_check'
            question_types.append(question_type)

        # 已知检查项目查相应疾病
        if self.check_words(self.check_qwds+self.cure_qwds, question) and 'check' in types:
            question_type = 'check_disease'
            question_types.append(question_type)

        # 症状防御
        if self.check_words(self.prevent_qwds, question) and 'disease' in types:
            question_type = 'disease_prevent'
            question_types.append(question_type)

        # 疾病医疗周期
        if self.check_words(self.lasttime_qwds, question) and 'disease' in types:
            question_type = 'disease_lasttime'
            question_types.append(question_type)

        # 疾病治疗方式
        if self.check_words(self.cureway_qwds, question) and 'disease' in types:
            question_type = 'disease_cureway'
            question_types.append(question_type)

        # 疾病治愈可能性
        if self.check_words(self.cureprob_qwds, question) and 'disease' in types:
            question_type = 'disease_cureprob'
            question_types.append(question_type)

        # 疾病易感染人群
        if self.check_words(self.easyget_qwds, question) and 'disease' in types :
            question_type = 'disease_easyget'
            question_types.append(question_type)

        # 疾病传染性
        if self.check_words(self.getway_qwds, question) and 'disease' in types:
            question_type = 'disease_getway'
            question_types.append(question_type)

        # 若没有查到相关的外部查询信息,且类型为疾病,那么则将该疾病的描述信息返回
        if question_types == [] and 'disease' in types:
            question_types = ['disease_desc']

        # 若没有查到相关的外部查询信息,且类型为症状,那么则将该症状的疾病信息返回
        if question_types == [] and 'symptom' in types:
            question_types = ['symptom_disease']

        # 将多个分类结果进行合并处理,组装成一个字典
        data['question_types'] = question_types

        return data

?这里用到一个关键的问句过滤。本质上要做的是实体识别,这里直接采用知识的做法,而不是学习的方法。

知识的做法是,结合大量的实体知识文本、逐个去做匹配,得到对应实体,顺便完成了槽位提取。

学习的方法是,提前训练好一个CRF系列的实体识别网络,直接输出实体的句中位置,也就完成了槽位的提取。

    '''问句过滤'''
    def check_medical(self, question):
        region_wds = []
        for i in self.region_tree.iter(question):   # ahocorasick库 匹配问题  iter返回一个元组,i的形式如(3, (23192, '乙肝'))
            wd = i[1][1]      # 匹配到的词
            region_wds.append(wd)
        print(region_wds)
        stop_wds = []
        for wd1 in region_wds:
            for wd2 in region_wds:
                if wd1 in wd2 and wd1 != wd2:
                    stop_wds.append(wd1)       # stop_wds取重复的短的词,如region_wds=['乙肝', '肝硬化', '硬化'],则stop_wds=['硬化']
        final_wds = [i for i in region_wds if i not in stop_wds]     # final_wds取长词
        final_dict = {i:self.wdtype_dict.get(i) for i in final_wds}  # 获取词和词所对应的实体类型
        global diseases_dict
        if final_dict:
            diseases_dict = final_dict
        print("final_dict : ",final_dict)
        if 'diseases_dict' in globals():
            print("diseases_dict : ",diseases_dict)
        else:
            print("diseases_dict does not exist.")
        return final_dict

关键点有3个:

1. region_tree提前把实体知识读取,构建加速树,形成(word,(index,word))

# 构造领域actree
self.region_tree = self.build_actree(list(self.region_words))

'''构造actree,加速过滤'''
def build_actree(self, wordlist):
    actree = ahocorasick.Automaton()         # 初始化trie树
    for index, word in enumerate(wordlist):
        actree.add_word(word, (index, word))     # 向trie树中添加单词
    actree.make_automaton()    # 将trie树转化为Aho-Corasick自动机
    return actree

2. 提取槽位实体。在匹配到词后,需要进行长短同义词辨识去重(肝硬化、硬化就是长短同义词,会被重复识别,需要去重)

stop_wds取重复的短的词,如region_wds=['乙肝', '肝硬化', '硬化'],则stop_wds=['硬化'],这可以实现? '肝硬化', '硬化'? 取一个

stop_wds = []
for wd1 in region_wds:
    for wd2 in region_wds:
        if wd1 in wd2 and wd1 != wd2:
            stop_wds.append(wd1)       # stop_wds取重复的短的词,如region_wds=['乙肝', '肝硬化', '硬化'],则stop_wds=['硬化']
final_wds = [i for i in region_wds if i not in stop_wds]     # final_wds取长词

3. 对槽位实体进行归类,用于获取《槽位实体》词和词对应的实体类型

final_dict = {i:self.wdtype_dict.get(i) for i in final_wds}  # 获取词和词所对应的实体类型

'''构造词对应的类型'''
    def build_wdtype_dict(self):
        wd_dict = dict()
        for wd in self.region_words:
            wd_dict[wd] = []
            if wd in self.disease_wds:
                wd_dict[wd].append('disease')
            if wd in self.department_wds:
                wd_dict[wd].append('department')
            if wd in self.check_wds:
                wd_dict[wd].append('check')
            if wd in self.drug_wds:
                wd_dict[wd].append('drug')
            if wd in self.food_wds:
                wd_dict[wd].append('food')
            if wd in self.symptom_wds:
                wd_dict[wd].append('symptom')
            if wd in self.producer_wds:
                wd_dict[wd].append('producer')
        return wd_dict

4. 上下文模式,记录上轮对话的槽位实体global disease_dict

global diseases_dict
if final_dict:
    diseases_dict = final_dict
print("final_dict : ",final_dict)
if 'diseases_dict' in globals():
    print("diseases_dict : ",diseases_dict)
else:
    print("diseases_dict does not exist.")
return final_dict        

最后就是得到了final_dict,就是需要的实体

步骤 2:判断意图,问题分类

        medical_dict = self.check_medical(question)
        if not medical_dict:
            if 'diseases_dict' in globals():    # 判断是否是首次提问,若首次提问,则diseases_dict无值
                medical_dict = diseases_dict
            else:
                return {}
        print("medical_dict : ", medical_dict)
        data['args'] = medical_dict

        #收集问句当中所涉及到的实体类型
        types = []
        for type_ in medical_dict.values():
            types += type_

提取的槽位就是medical_dict,根据该实体/实体类型,得到对应的问题予语义是什么意思,就是问题分类。以

# 推荐食品
? ? ? ? if self.check_words(self.food_qwds, question) and 'disease' in types:
? ? ? ? ? ? deny_status = self.check_words(self.deny_words, question)
? ? ? ? ? ? if deny_status:
? ? ? ? ? ? ? ? question_type = 'disease_not_food'
? ? ? ? ? ? else:
? ? ? ? ? ? ? ? question_type = 'disease_do_food'
? ? ? ? ? ? if self.check_words(['能吃','能喝','可以吃','可以喝'], question):
? ? ? ? ? ? ? ? question_types.append('disease_can_eat')
? ? ? ? ? ? print(question_type)
? ? ? ? ? ? question_types.append(question_type)

为例。分析问题类型,通过正则表达式匹配的思路,判断问句疑问词是否出现,对应到哪个问题类型。

        # 问句疑问词
        self.symptom_qwds = ['症状', '表征', '现象', '症候', '表现', '会引起']
        self.cause_qwds = ['原因','成因', '病因', '为什么', '怎么会', '怎样才', '咋样才', '怎样会', '如何会', '为啥', '为何', '如何才会', '怎么才会', '会导致', '会造成']
        self.acompany_qwds = ['并发症', '并发', '一起发生', '一并发生', '一起出现', '一并出现', '一同发生', '一同出现', '伴随发生', '伴随', '共现', '引起','有关']
        self.food_qwds = ['饮食', '饮用', '吃', '食', '伙食', '膳食', '喝', '菜' ,'忌口', '补品', '保健品', '食谱', '菜谱', '食用', '食物','补品']
        self.drug_qwds = ['吃','药', '药品', '用药', '胶囊', '口服液', '炎片']
        self.prevent_qwds = ['预防', '防范', '抵制', '抵御', '防止','躲避','逃避','避开','免得','逃开','避开','避掉','躲开','躲掉','绕开',
                             '怎样才能不', '怎么才能不', '咋样才能不','咋才能不', '如何才能不',
                             '怎样才不', '怎么才不', '咋样才不','咋才不', '如何才不',
                             '怎样才可以不', '怎么才可以不', '咋样才可以不', '咋才可以不', '如何可以不',
                             '怎样才可不', '怎么才可不', '咋样才可不', '咋才可不', '如何可不','日常','护理']
        self.lasttime_qwds = ['周期', '多久', '多长时间', '多少时间', '几天', '几年', '多少天', '多少小时', '几个小时', '多少年']
        self.cureway_qwds = ['怎么治疗', '如何医治', '怎么医治', '怎么治', '怎么医', '如何治', '医治方式', '疗法', '咋治', '怎么办', '咋办', '咋治']
        self.cureprob_qwds = ['多大概率能治好', '多大几率能治好', '治好希望大么', '几率', '几成', '比例', '可能性', '能治', '可治', '可以治', '可以医']
        self.getway_qwds = ['传染']
        self.easyget_qwds = ['易感人群', '容易感染', '易发人群', '什么人', '哪些人', '感染', '染上', '得上']
        self.check_qwds = ['检查', '检查项目', '查出', '检查', '测出', '试出']
        self.belong_qwds = ['属于什么科', '属于', '什么科', '科室']
        self.cure_qwds = ['治疗什么', '治啥', '治疗啥', '医治啥', '治愈啥', '主治啥', '主治什么', '有什么用', '有何用', '用处', '用途',
                          '有什么好处', '有什么益处', '有何益处', '用来', '用来做啥', '用来作甚', '需要', '要','可以治']
        print('model init finished ......')

步骤 3:组装json,送给search

data['args'] = medical_dict

# 将多个分类结果进行合并处理,组装成一个字典
data['question_types'] = question_types

data数据中包含args和question_types。如“乙肝怎么治疗”,得到的data如下:

{'args': {'乙肝': ['disease']}, 'question_types': ['disease_cureway']}

三、查询图谱

提取data中的args、question_type,创建cypher语句,用于查询图谱,得到的是一个sqls的JSON格式。包含questoin_type、sql,如下,

[{'question_type': 'disease_cureway', 'sql': ["MATCH (m:Disease) where m.name = '乙肝' return m.name, m.cure_way"]}]

    '''解析主函数'''
    def parser_main(self, res_classify):
        args = res_classify['args']
        entity_dict = self.build_entitydict(args)
        question_types = res_classify['question_types']
        sqls = []
        for question_type in question_types:
            sql_ = {}
            sql_['question_type'] = question_type
            sql = []
            if question_type == 'disease_symptom':
                sql = self.sql_transfer(question_type, entity_dict.get('disease'))

            elif question_type == 'symptom_disease':
                sql = self.sql_transfer(question_type, entity_dict.get('symptom'))

            elif question_type == 'disease_cause':
                sql = self.sql_transfer(question_type, entity_dict.get('disease'))

            elif question_type == 'disease_acompany':
                sql = self.sql_transfer(question_type, entity_dict.get('disease'))

            elif question_type == 'disease_can_eat':
                sql = self.sql_transfer(question_type, entity_dict.get('disease'))

            elif question_type == 'disease_not_food':
                sql = self.sql_transfer(question_type, entity_dict.get('disease'))

            elif question_type == 'disease_do_food':
                sql = self.sql_transfer(question_type, entity_dict.get('disease'))

            elif question_type == 'food_not_disease':
                sql = self.sql_transfer(question_type, entity_dict.get('food'))

            elif question_type == 'food_do_disease':
                sql = self.sql_transfer(question_type, entity_dict.get('food'))

            elif question_type == 'disease_drug':
                sql = self.sql_transfer(question_type, entity_dict.get('disease'))

            elif question_type == 'drug_disease':
                sql = self.sql_transfer(question_type, entity_dict.get('drug'))

            elif question_type == 'disease_check':
                sql = self.sql_transfer(question_type, entity_dict.get('disease'))

            elif question_type == 'check_disease':
                sql = self.sql_transfer(question_type, entity_dict.get('check'))

            elif question_type == 'disease_prevent':
                sql = self.sql_transfer(question_type, entity_dict.get('disease'))

            elif question_type == 'disease_lasttime':
                sql = self.sql_transfer(question_type, entity_dict.get('disease'))

            elif question_type == 'disease_cureway':
                sql = self.sql_transfer(question_type, entity_dict.get('disease'))

            elif question_type == 'disease_cureprob':
                sql = self.sql_transfer(question_type, entity_dict.get('disease'))

            elif question_type == 'disease_getway':
                sql = self.sql_transfer(question_type, entity_dict.get('disease'))

            elif question_type == 'disease_easyget':
                sql = self.sql_transfer(question_type, entity_dict.get('disease'))

            elif question_type == 'disease_desc':
                sql = self.sql_transfer(question_type, entity_dict.get('disease'))

            if sql:
                sql_['sql'] = sql

                sqls.append(sql_)
        return sqls

    '''针对不同的问题,分开进行处理'''
    def sql_transfer(self, question_type, entities):
        if not entities:
            return []

        # 查询语句
        sql = []
        # 查询疾病的原因
        if question_type == 'disease_cause':
            sql = ["MATCH (m:Disease) where m.name = '{0}' return m.name, m.cause".format(i) for i in entities]

        # 查询疾病的防御措施
        elif question_type == 'disease_prevent':
            sql = ["MATCH (m:Disease) where m.name = '{0}' return m.name, m.prevent".format(i) for i in entities]

        # 查询疾病的持续时间
        elif question_type == 'disease_lasttime':
            sql = ["MATCH (m:Disease) where m.name = '{0}' return m.name, m.cure_lasttime".format(i) for i in entities]

        # 查询疾病的治愈概率
        elif question_type == 'disease_cureprob':
            sql = ["MATCH (m:Disease) where m.name = '{0}' return m.name, m.cured_prob".format(i) for i in entities]

        # 查询疾病的治疗方式
        elif question_type == 'disease_cureway':
            sql = ["MATCH (m:Disease) where m.name = '{0}' return m.name, m.cure_way".format(i) for i in entities]

        # 查询疾病传染性
        elif question_type == 'disease_getway':
            sql = ["MATCH (m:Disease) where m.name = '{0}' return m.name, m.get_way".format(i) for i in entities]

        # 查询疾病的易发人群
        elif question_type == 'disease_easyget':
            sql = ["MATCH (m:Disease) where m.name = '{0}' return m.name, m.easy_get".format(i) for i in entities]

        # 查询疾病的相关介绍
        elif question_type == 'disease_desc':
            sql = ["MATCH (m:Disease) where m.name = '{0}' return m.name, m.desc".format(i) for i in entities]

        # 查询疾病有哪些症状
        elif question_type == 'disease_symptom':
            sql = ["MATCH (m:Disease)-[r:has_symptom]->(n:Symptom) where m.name = '{0}' return m.name, r.name, n.name".format(i) for i in entities]

        # 查询症状会导致哪些疾病
        elif question_type == 'symptom_disease':
            sql = ["MATCH (m:Disease)-[r:has_symptom]->(n:Symptom) where n.name = '{0}' return m.name, r.name, n.name".format(i) for i in entities]

        # 查询疾病的并发症
        elif question_type == 'disease_acompany':
            sql1 = ["MATCH (m:Disease)-[r:acompany_with]->(n:Disease) where m.name = '{0}' return m.name, r.name, n.name".format(i) for i in entities]
            sql2 = ["MATCH (m:Disease)-[r:acompany_with]->(n:Disease) where n.name = '{0}' return m.name, r.name, n.name".format(i) for i in entities]
            sql = sql1 + sql2

        # 查询疾病是否可以吃某种食物:
        elif question_type == 'disease_can_eat':
            sql = ["MATCH (m:Disease) where m.name = '{0}' return m.name, m.can_eat".format(i) for i in entities]

        # 查询疾病的忌口
        elif question_type == 'disease_not_food':
            sql = ["MATCH (m:Disease)-[r:no_eat]->(n:Food) where m.name = '{0}' return m.name, r.name, n.name".format(i) for i in entities]

        # 查询疾病建议吃的东西
        elif question_type == 'disease_do_food':
            sql1 = ["MATCH (m:Disease)-[r:do_eat]->(n:Food) where m.name = '{0}' return m.name, r.name, n.name".format(i) for i in entities]
            sql2 = ["MATCH (m:Disease)-[r:recommand_eat]->(n:Food) where m.name = '{0}' return m.name, r.name, n.name".format(i) for i in entities]
            sql = sql1 + sql2

        # 已知忌口查疾病
        elif question_type == 'food_not_disease':
            sql = ["MATCH (m:Disease)-[r:no_eat]->(n:Food) where n.name = '{0}' return m.name, r.name, n.name".format(i) for i in entities]

        # 已知推荐查疾病
        elif question_type == 'food_do_disease':
            sql1 = ["MATCH (m:Disease)-[r:do_eat]->(n:Food) where n.name = '{0}' return m.name, r.name, n.name".format(i) for i in entities]
            sql2 = ["MATCH (m:Disease)-[r:recommand_eat]->(n:Food) where n.name = '{0}' return m.name, r.name, n.name".format(i) for i in entities]
            sql = sql1 + sql2

        # 查询疾病常用药品-药品别名记得扩充
        elif question_type == 'disease_drug':
            sql1 = ["MATCH (m:Disease)-[r:common_drug]->(n:Drug) where m.name = '{0}' return m.name, r.name, n.name".format(i) for i in entities]
            sql2 = ["MATCH (m:Disease)-[r:recommand_drug]->(n:Drug) where m.name = '{0}' return m.name, r.name, n.name".format(i) for i in entities]
            sql = sql1 + sql2

        # 已知药品查询能够治疗的疾病
        elif question_type == 'drug_disease':
            sql1 = ["MATCH (m:Disease)-[r:common_drug]->(n:Drug) where n.name = '{0}' return m.name, r.name, n.name".format(i) for i in entities]
            sql2 = ["MATCH (m:Disease)-[r:recommand_drug]->(n:Drug) where n.name = '{0}' return m.name, r.name, n.name".format(i) for i in entities]
            sql = sql1 + sql2

        # 查询疾病应该进行的检查
        elif question_type == 'disease_check':
            sql = ["MATCH (m:Disease)-[r:need_check]->(n:Check) where m.name = '{0}' return m.name, r.name, n.name".format(i) for i in entities]

        # 已知检查查询疾病
        elif question_type == 'check_disease':
            sql = ["MATCH (m:Disease)-[r:need_check]->(n:Check) where n.name = '{0}' return m.name, r.name, n.name".format(i) for i in entities]

        print(sql)
        return sql

四、拼装答复

查询语句执行后,对返回的结果进行拼装为答复结果。

'''执行cypher查询,并返回相应结果'''
    def search_main(self, sqls):
        final_answers = []
        for sql_ in sqls:
            question_type = sql_['question_type']
            queries = sql_['sql']
            answers = []
            for query in queries:
                ress = self.g.run(query).data()
                answers += ress
            final_answer = self.answer_prettify(question_type, answers)
            if final_answer:
                final_answers.append(final_answer)
        return final_answers

其中根据question_type和查到的结果answer,调用回复模板,组装构成回复结果

    '''根据对应的qustion_type,调用相应的回复模板'''
    def answer_prettify(self, question_type, answers):
        final_answer = []
        if not answers:
            return ''
        if question_type == 'disease_symptom':
            desc = [i['n.name'] for i in answers]
            subject = answers[0]['m.name']
            final_answer = '{0}的症状包括:{1}'.format(subject, ';'.join(list(set(desc))[:self.num_limit]))

        elif question_type == 'symptom_disease':
            desc = [i['m.name'] for i in answers]
            subject = answers[0]['n.name']
            final_answer = '症状{0}可能染上的疾病有:{1}'.format(subject, ';'.join(list(set(desc))[:self.num_limit]))

        elif question_type == 'disease_cause':
            desc = [i['m.cause'] for i in answers]
            print(answers)
            print(desc)
            subject = answers[0]['m.name']
            final_answer = '{0}可能的成因有:{1}'.format(subject, ';'.join(list(set(desc))[:self.num_limit]))

        elif question_type == 'disease_prevent':
            desc = [i['m.prevent'] for i in answers]
            subject = answers[0]['m.name']
            final_answer = '{0}的预防措施包括:{1}'.format(subject, ';'.join(list(set(desc))[:self.num_limit]))

        elif question_type == 'disease_lasttime':
            desc = [i['m.cure_lasttime'] for i in answers]
            subject = answers[0]['m.name']
            final_answer = '{0}治疗可能持续的周期为:{1}'.format(subject, ';'.join(list(set(desc))[:self.num_limit]))

        elif question_type == 'disease_cureway':
            desc = [';'.join(i['m.cure_way']) for i in answers]
            subject = answers[0]['m.name']
            final_answer = '{0}可以尝试如下治疗:{1}'.format(subject, ';'.join(list(set(desc))[:self.num_limit]))

        elif question_type == 'disease_cureprob':
            desc = [i['m.cured_prob'] for i in answers]
            subject = answers[0]['m.name']
            final_answer = '{0}治愈的概率为(仅供参考):{1}'.format(subject, ';'.join(list(set(desc))[:self.num_limit]))

        elif question_type == 'disease_getway':
            desc = [i['m.get_way'] for i in answers]
            subject = answers[0]['m.name']
            final_answer = '{0}的传播方式为:{1}'.format(subject, ';'.join(list(set(desc))[:self.num_limit]))

        elif question_type == 'disease_easyget':
            desc = [i['m.easy_get'] for i in answers]
            subject = answers[0]['m.name']
            final_answer = '{0}的易感人群包括:{1}'.format(subject, ';'.join(list(set(desc))[:self.num_limit]))

        elif question_type == 'disease_desc':
            desc = [i['m.desc'] for i in answers]
            subject = answers[0]['m.name']
            final_answer = '{0},熟悉一下:{1}'.format(subject,  ';'.join(list(set(desc))[:self.num_limit]))

        elif question_type == 'disease_acompany':
            desc1 = [i['n.name'] for i in answers]
            desc2 = [i['m.name'] for i in answers]
            subject = answers[0]['m.name']
            desc = [i for i in desc1 + desc2 if i != subject]
            final_answer = '{0}的并发症包括:{1}'.format(subject, ';'.join(list(set(desc))[:self.num_limit]))

        elif question_type == 'disease_can_eat':
            desc = [answers[0]['m.can_eat']]
            print(answers)
            print(desc)
            subject = answers[0]['m.name']
            print(subject)
            if desc:
                final_answer = '{0}可以吃/喝:{1}'.format(subject, ';'.join(list(set(desc))[:self.num_limit]))

        elif question_type == 'disease_not_food':
            desc = [i['n.name'] for i in answers]
            subject = answers[0]['m.name']
            final_answer = '{0}忌食的食物包括有:{1}'.format(subject, ';'.join(list(set(desc))[:self.num_limit]))

        elif question_type == 'disease_do_food':
            do_desc = [i['n.name'] for i in answers if i['r.name'] == '宜吃']
            recommand_desc = [i['n.name'] for i in answers if i['r.name'] == '推荐食谱']
            subject = answers[0]['m.name']
            final_answer = '{0}推荐{1}\n推荐食谱包括有:{2}'.format(subject, ';'.join(list(set(do_desc))[:self.num_limit]), ';'.join(list(set(recommand_desc))[:self.num_limit]))

        elif question_type == 'food_not_disease':
            desc = [i['m.name'] for i in answers]
            subject = answers[0]['n.name']
            final_answer = '患有{0}的人最好不要吃{1}'.format(';'.join(list(set(desc))[:self.num_limit]), subject)

        elif question_type == 'food_do_disease':
            desc = [i['m.name'] for i in answers]
            subject = answers[0]['n.name']
            final_answer = '患有{0}的人建议多试试{1}'.format(';'.join(list(set(desc))[:self.num_limit]), subject)

        elif question_type == 'disease_drug':
            desc = [i['n.name'] for i in answers]
            subject = answers[0]['m.name']
            final_answer = '{0}通常的使用的药品包括:{1}'.format(subject, ';'.join(list(set(desc))[:self.num_limit]))

        elif question_type == 'drug_disease':
            desc = [i['m.name'] for i in answers]
            subject = answers[0]['n.name']
            final_answer = '{0}主治的疾病有{1},可以试试'.format(subject, ';'.join(list(set(desc))[:self.num_limit]))

        elif question_type == 'disease_check':
            desc = [i['n.name'] for i in answers]
            subject = answers[0]['m.name']
            final_answer = '{0}通常可以通过以下方式检查出来:{1}'.format(subject, ';'.join(list(set(desc))[:self.num_limit]))

        elif question_type == 'check_disease':
            desc = [i['m.name'] for i in answers]
            subject = answers[0]['n.name']
            final_answer = '通常可以通过{0}检查出来的疾病有{1}'.format(subject, ';'.join(list(set(desc))[:self.num_limit]))

        print("final_answer: ",final_answer)
        return final_answer

至此就结束了,最后来看一下等待始终执行的主函数。

from question_classifier import *
from question_parser import *
from answer_search import *

'''问答类'''
class ChatBotGraph:
    def __init__(self):
        self.classifier = QuestionClassifier()
        self.parser = QuestionPaser()
        self.searcher = AnswerSearcher()

    def chat_main(self, sent):
        answer = '您好,我是肝病问答小助手,希望可以帮到您。祝您身体健康!'
        res_classify = self.classifier.classify(sent)
        print(res_classify)
        if not res_classify:
            return '抱歉,小助手暂时无法回答您的问题,请咨询医生。'
        res_sql = self.parser.parser_main(res_classify)
        final_answers = self.searcher.search_main(res_sql)
        if not final_answers:
            return answer
        else:
            return '\n'.join(final_answers)

if __name__ == '__main__':
    handler = ChatBotGraph()
    while 1:
        question = input('用户:')
        answer = handler.chat_main(question)
        print('小助手:', answer)

五、总结

知识图谱问答,最重要的就是判断问题类型、提取实体槽位,主要用到 规则 + 学习 两种方法。

意图识别:学习——采用文本分类,规则——问题类型关键词匹配

槽位提取:学习——采用CRF识别,规则——预置实体知识库匹配

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-02-06 13:50:16  更:2022-02-06 13:52:58 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 11:09:20-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码