前言
本文参考吴恩达老师的机器学习课程作业,结合自己的理解所作笔记
1、热身:创建并初始化二层神经网络
模型的结构为:LINEAR -> RELU -> LINEAR -> SIGMOID
矩阵的形状要搞清楚,以这个五层神经网络为例(和本题无关),W矩阵的行数一定等于本层神经元的个数n[l],由Z = Wa + b 可知 W的列和a的行相等,也就是等于前一层神经元的个数,最终得到的乘积要和b相加等于一个(n[l],1)的结果Z,再输入激活函数a = g(Z),把a作为下一层神经网络的输入,如此反复。牢记下面画红圈的部分
随机初始化W1,W2。随意处理b1,b2 (一般赋值为零) parameters是存放梯度下降所需要的参数字典
def initialize_parameters(n_x, n_h, n_y):
"""
Argument:
n_x -- size of the input layer
n_h -- size of the hidden layer
n_y -- size of the output layer
Returns:
parameters -- python dictionary containing your parameters:
W1 -- weight matrix of shape (n_h, n_x)
b1 -- bias vector of shape (n_h, 1)
W2 -- weight matrix of shape (n_y, n_h)
b2 -- bias vector of shape (n_y, 1)
"""
np.random.seed(1)
W1 = np.random.randn(n_h, n_x) * 0.01
b1 = np.zeros((n_h, 1))
W2 = np.random.randn(n_y, n_h) * 0.01
b2 = np.zeros((n_y, 1))
assert(W1.shape == (n_h, n_x))
assert(b1.shape == (n_h, 1))
assert(W2.shape == (n_y, n_h))
assert(b2.shape == (n_y, 1))
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
2、进阶:L层神经网络
模型的结构为 [LINEAR -> RELU] (L-1) -> LINEAR -> SIGMOID。也就是说,L-1层使用ReLU作为激活函数,最后一层采用sigmoid激活函数输出。
函数调用过程如下图所示: 我们要实现的四个主要函数
第一部分——正向传播
函数解释汇总
initialize_parameters_deep(layer_dims) 初始化神经网络的W和b,需要指定每层神经元的个数,返回parameter字典包含网络的参数W,b
linear_forward(A, W, b)计算Z = WA + b,返回Z和包含A,W,b的cache,便于后续反向传播更新参数
linear_activation_forward(A_prev, W, b, activation) 首先调用线性传播,获得Z和linear_cache,再计算A =g(Z),函数g可以是sigmoid或者relu,返回为A和包含Z的activitation_cache,最后把两个cache组合成为一个cache返回,“cache = (linear_cache, activation_cache)”,总结一下,其实最后返回的cache中包含的只不过四个参数W,b,Z,A,
L_model_forward(X, parameters)是正向传播的总函数,先用for循环进行L-1次[Linear->Relu]传播,调用linear_activation_forward(),参数activitation选择relu,然后获取每一层的cache,把它加到caches中备用(反向传播要用到),然后调用一次linear_activitation_forward()参数activitation 选择sigmoid,获取最后一层的cache和AL(也就是y_hat)
(1)初始化参数initialize_parameters_deep
initialize_parameters_deep(layer_dims) 初始化神经网络的W和b,需要指定每层神经元的个数,返回parameter字典包含网络的参数W,b
def initialize_parameters_deep(layer_dims):
"""
Arguments:
layer_dims -- python array (list) containing the dimensions of each layer in our network
Returns:
parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
bl -- bias vector of shape (layer_dims[l], 1)
"""
np.random.seed(3)
parameters = {}
L = len(layer_dims)
for l in range(1, L):
parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1])
parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))
return parameters
(2)线性传播linear_forward
linear_forward(A, W, b)计算Z = WA + b,返回Z和包含A,W,b的cache,便于后续反向传播更新参数
def linear_forward(A, W, b):
"""
Implement the linear part of a layer's forward propagation.
Arguments:
A -- activations from previous layer (or input data): (size of previous layer, number of examples)
W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
b -- bias vector, numpy array of shape (size of the current layer, 1)
Returns:
Z -- the input of the activation function, also called pre-activation parameter
cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently
"""
Z = np.dot(W, A) + b
assert(Z.shape == (W.shape[0], A.shape[1]))
cache = (A, W, b)
return Z, cache
(3)正向线性激活linear_activation_forward
linear_activation_forward(A_prev, W, b, activation) 首先调用线性传播,获得Z和linear_cache,再计算A =g(Z),函数g可以是sigmoid或者relu,返回为A和包含Z的activitation_cache,最后把两个cache组合成为一个cache返回,“cache = (linear_cache, activation_cache)”,总结一下,其实最后返回的cache中包含的只不过四个参数W,b,Z,A,
def linear_activation_forward(A_prev, W, b, activation):
"""
Implement the forward propagation for the LINEAR->ACTIVATION layer
Arguments:
A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
b -- bias vector, numpy array of shape (size of the current layer, 1)
activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
Returns:
A -- the output of the activation function, also called the post-activation value
cache -- a python dictionary containing "linear_cache" and "activation_cache";
stored for computing the backward pass efficiently
"""
if activation == "sigmoid":
Z, linear_cache = linear_forward(A_prev,W,b)
A, activation_cache = sigmoid(Z)
elif activation == "relu":
Z, linear_cache = linear_forward(A_prev,W,b)
A, activation_cache = relu(Z)
assert (A.shape == (W.shape[0], A_prev.shape[1]))
cache = (linear_cache, activation_cache)
return A, cache
(4)正向传播L_model_forward(X, parameters)
L_model_forward(X, parameters)是正向传播的总函数,先用for循环进行L-1次[Linear->Relu]传播,调用linear_activation_forward(),参数activitation选择relu,然后获取每一层的cache,把它加到caches中备用(反向传播要用到),然后调用一次linear_activitation_forward()参数activitation 选择sigmoid,获取最后一层的cache和AL(也就是y_hat)
def L_model_forward(X, parameters):
"""
Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation
Arguments:
X -- data, numpy array of shape (input size, number of examples)
parameters -- output of initialize_parameters_deep()
Returns:
AL -- last post-activation value
caches -- list of caches containing:
every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2)
the cache of linear_sigmoid_forward() (there is one, indexed L-1)
"""
caches = []
A = X
L = len(parameters) // 2
for l in range(1, L):
A_prev = A
A, cache = linear_activation_forward(A_prev,parameters['W' + str(l)],parameters['b' + str(l)],activation = "relu")
caches.append(cache)
AL, cache = linear_activation_forward(A,parameters['W' + str(L)],parameters['b' + str(L)],activation = "sigmoid")
caches.append(cache)
assert(AL.shape == (1,X.shape[1]))
return AL, caches
第二部分——计算交叉熵损失
计算交叉熵损失compute_cost(AL, Y)
compute_cost(AL, Y)计算交叉熵损失,两个大小相同(1, n_x)的矩阵逐个元素(elementwise)相乘再相加,然后求和返回
def compute_cost(AL, Y):
"""
Implement the cost function defined by equation (7).
Arguments:
AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)
Returns:
cost -- cross-entropy cost
"""
m = Y.shape[1]
cost = -1 / m * np.sum(Y * np.log(AL) + (1-Y) * np.log(1-AL),axis=1,keepdims=True)
cost = np.squeeze(cost)
assert(cost.shape == ())
return cost
第三部分——反向传播(梯度下降)
这一部分多了一些数学内容,函数基本和正向传播相似,不过计算是求梯度 推导如下 (C1W3L010 slides) 最终结论
总体思路
从最后一层开始往前传播,先求解最后一层,如下: 先求dAL(损失函数对倒数第一个神经元的激活输出y_hat求导)公式如下: dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) 有了dAL,我们可以调用linear_activation_backward(第一次先选择sigmoid,其他L-1次选择relu)求出dZ,内部调用linear_backward求出dAL_prev,dWL,dbL,再把dAL_prev入作为新的输入到linear_activation_backward如此传播(for循环)直到达到第一层
(1)线性反向linear_backward(dZ, cache)
求dW,db
def linear_backward(dZ, cache):
"""
Implement the linear portion of backward propagation for a single layer (layer l)
Arguments:
dZ -- Gradient of the cost with respect to the linear output (of current layer l)
cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer
Returns:
dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
dW -- Gradient of the cost with respect to W (current layer l), same shape as W
db -- Gradient of the cost with respect to b (current layer l), same shape as b
"""
A_prev, W, b = cache
m = A_prev.shape[1]
dW = 1 / m * np.dot(dZ ,A_prev.T)
db = 1 / m * np.sum(dZ,axis = 1 ,keepdims=True)
dA_prev = np.dot(W.T,dZ)
assert (dA_prev.shape == A_prev.shape)
assert (dW.shape == W.shape)
assert (db.shape == b.shape)
return dA_prev, dW, db
(2)线性激活反向linear_activation_backward(dA, cache, activation)
def linear_activation_backward(dA, cache, activation):
"""
Implement the backward propagation for the LINEAR->ACTIVATION layer.
Arguments:
dA -- post-activation gradient for current layer l
cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
Returns:
dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
dW -- Gradient of the cost with respect to W (current layer l), same shape as W
db -- Gradient of the cost with respect to b (current layer l), same shape as b
"""
linear_cache, activation_cache = cache
if activation == "relu":
dZ = relu_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
elif activation == "sigmoid":
dZ = sigmoid_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
return dA_prev, dW, db
(3)反向传播L_model_backward(AL, Y, caches)
def L_model_backward(AL, Y, caches):
"""
Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group
Arguments:
AL -- probability vector, output of the forward propagation (L_model_forward())
Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
caches -- list of caches containing:
every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2)
the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1])
Returns:
grads -- A dictionary with the gradients
grads["dA" + str(l)] = ...
grads["dW" + str(l)] = ...
grads["db" + str(l)] = ...
"""
grads = {}
L = len(caches)
m = AL.shape[1]
Y = Y.reshape(AL.shape)
dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
current_cache = caches[L-1]
grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, activation = "sigmoid")
for l in reversed(range(L-1)):
current_cache = caches[l]
dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l+2)], current_cache, activation = "relu")
grads["dA" + str(l + 1)] = dA_prev_temp
grads["dW" + str(l + 1)] = dW_temp
grads["db" + str(l + 1)] = db_temp
return grads
(4)更新参数update_parameters(parameters, grads, learning_rate)
def update_parameters(parameters, grads, learning_rate):
"""
Update parameters using gradient descent
Arguments:
parameters -- python dictionary containing your parameters
grads -- python dictionary containing your gradients, output of L_model_backward
Returns:
parameters -- python dictionary containing your updated parameters
parameters["W" + str(l)] = ...
parameters["b" + str(l)] = ...
"""
L = len(parameters) // 2
for l in range(L):
parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * grads["dW" + str(l + 1)]
parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * grads["db" + str(l + 1)]
return parameters
3、深层神经网络的应用——图像分类
(1)函数调用
def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):
"""
Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID.
Arguments:
X -- data, numpy array of shape (number of examples, num_px * num_px * 3)
Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
layers_dims -- list containing the input size and each layer size, of length (number of layers + 1).
learning_rate -- learning rate of the gradient descent update rule
num_iterations -- number of iterations of the optimization loop
print_cost -- if True, it prints the cost every 100 steps
Returns:
parameters -- parameters learnt by the model. They can then be used to predict.
"""
np.random.seed(1)
costs = []
parameters = initialize_parameters_deep(layers_dims)
for i in range(0, num_iterations):
AL, caches = L_model_forward(X, parameters)
cost = compute_cost(AL, Y)
grads = L_model_backward(AL, Y, caches)
parameters = update_parameters(parameters, grads, learning_rate)
if print_cost and i % 100 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
if print_cost and i % 100 == 0:
costs.append(cost)
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()
return parameters
采用五层神经网络训练,结果如下 预测准确率80%
(2)结果分析
首先,让我们看一下L层模型标记错误的一些图像。 这将显示一些分类错误的图像
该模型在表现效果较差的的图像包括:
猫身处于异常位置 图片背景与猫颜色类似 猫的种类和颜色稀有 相机角度 图片的亮度 比例变化(猫的图像很大或很小)
4、reference
deeplearning.ai by Andrew Ng on couresa
|