IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 迁移学习-域分类损失函数-python代码实现 -> 正文阅读

[人工智能]迁移学习-域分类损失函数-python代码实现

域适应迁移学习的理解

中源域和目标域经过相同的映射来实现对齐。

迁移学习的目标函数分为三部分

在这里插入图片描述

  1. 源域分类损失项
  2. 源域和目标域域分类损失项(又叫对抗loss,AdversarialLoss)
  3. 源域和目标域的特征分布差异损失项

域分类损失的理解

域分类时,源域的标签是1,目标域的标签是0,最大化域分类误差就是让域判别器分不清源域和目标域,如此这样源域和目标域在分布上就变得对齐了。
对于任意一个来自源域或者目标域的点,它通过域判别层后的结果是:
在这里插入图片描述
这个点的域分类误差定义为:
在这里插入图片描述
交叉熵函数:
在这里插入图片描述
把负号提入对数函数内就是上式的形式。

代码实现

注:以下代码基于jupyter notebook编辑器
编写AdversarialLoss类

import torch
import torch.nn as nn
from torch.autograd import Function
import torch.nn.functional as F
import numpy as np

class LambdaSheduler(nn.Module):
    def __init__(self, gamma=1.0, max_iter=1000, **kwargs):
        super(LambdaSheduler, self).__init__()
        self.gamma = gamma
        self.max_iter = max_iter
        self.curr_iter = 0

    def lamb(self):
        p = self.curr_iter / self.max_iter
        lamb = 2. / (1. + np.exp(-self.gamma * p)) - 1
        return lamb
    
    def step(self):
        self.curr_iter = min(self.curr_iter + 1, self.max_iter)

class AdversarialLoss(nn.Module):
    '''
    Acknowledgement: The adversarial loss implementation is inspired by http://transfer.thuml.ai/
    '''
    def __init__(self, gamma=1.0, max_iter=1000, use_lambda_scheduler=True, **kwargs):
        super(AdversarialLoss, self).__init__()
        self.domain_classifier = Discriminator()
        self.use_lambda_scheduler = use_lambda_scheduler
        if self.use_lambda_scheduler:
            self.lambda_scheduler = LambdaSheduler(gamma, max_iter)
        
    def forward(self, source, target):
        lamb = 1.0
        if self.use_lambda_scheduler:
            lamb = self.lambda_scheduler.lamb()
            self.lambda_scheduler.step()
        source_loss = self.get_adversarial_result(source, True, lamb)
        target_loss = self.get_adversarial_result(target, False, lamb)
        adv_loss = 0.5 * (source_loss + target_loss)
        return adv_loss
    
    def get_adversarial_result(self, x, source=True, lamb=1.0):
        x = ReverseLayerF.apply(x, lamb)
        domain_pred = self.domain_classifier(x)
        device = domain_pred.device
        if source:
            domain_label = torch.ones(len(x), 1).long()
        else:
            domain_label = torch.zeros(len(x), 1).long()
        loss_fn = nn.BCELoss()
        loss_adv = loss_fn(domain_pred, domain_label.float().to(device))
        return loss_adv

class ReverseLayerF(Function):
    @staticmethod
    def forward(ctx, x, alpha):
        ctx.alpha = alpha
        return x.view_as(x)
    
    @staticmethod
    def backward(ctx, grad_output):
        output = grad_output.neg() * ctx.alpha
        return output, None

class Discriminator(nn.Module):
    def __init__(self, input_dim=256, hidden_dim=256): #256是根据你的输入维度来修改的
        super(Discriminator, self).__init__()
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        layers = [
            nn.Linear(input_dim, hidden_dim),
            nn.BatchNorm1d(hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim),
            nn.BatchNorm1d(hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, 1),
            nn.Sigmoid()
        ]
        self.layers = torch.nn.Sequential(*layers)
    
    def forward(self, x):
        return self.layers(x)

产生一个 AdversarialLoss对象

adv = AdversarialLoss()

模拟产生源域和目标域的经卷积和池化后的特征

source = torch.randn(64, 256) #假设batchsize=64, 假设全连接层之前的特征展平之后只有256维
target = torch.randn(64, 256) #假设batchsize=64, 假设全连接层之前的特征展平之后只有256维
print(source)
tensor([[-0.4985, -0.6358,  0.3027,  ..., -0.8884, -0.1802, -0.4709],
      [ 0.4836,  1.3529, -0.3280,  ...,  0.0411, -0.0222,  0.5455],
      [ 0.1531, -2.0797,  0.6390,  ..., -1.0654,  2.0309,  1.0322],
      ...,
      [-1.0026, -0.5956, -1.0667,  ...,  0.7895,  0.9637, -1.1251],
      [-1.7431, -1.8726, -0.2252,  ..., -0.0688,  0.5557,  1.6147],
      [-1.1098,  0.4996,  1.6020,  ...,  0.7608,  0.4584,  0.5445]])
y = adv(source, target)
print(y)
>>>output
tensor(0.7109, grad_fn=<MulBackward0>)

参考资料:
DANN:Domain-Adversarial Training of Neural Networks

在CNN中的结合代码实现及讲解

先创建一个4分类的2DCNN类,输入数据为batch_siza* 3 * 128 * 128

class Net_only(nn.Module):
  '''
  计算源域数据和目标域数据的MMD距离
  Params:
  x_in: 输入数据(batch, channel, hight, width)
  Return:
  x_out: 输出数据(batch, n_labes)
  '''
  ## 这里 x_in:batch=64, channel=3, hight=128, width=128
  ## x_out:batch=64, n_labes=5
  def __init__(self):
      super(Net_only, self).__init__()
      self.conv3_1 = nn.Conv2d(3, 32, 3)
      self.pool3_l = nn.MaxPool2d(2, 2)
      self.bn3_1 = nn.BatchNorm2d(32)
      self.conv3_2 = nn.Conv2d(32, 64, 3)
      self.pool3_2 = nn.MaxPool2d(2, 2)
      self.bn3_2 = nn.BatchNorm2d(64)
      self.conv3_3 = nn.Conv2d(64, 64, 3)
      self.pool3_3 = nn.MaxPool2d(2, 2)
      self.bn3_3 = nn.BatchNorm2d(64)
      self.conv3_3 = nn.Conv2d(64, 64, 3)
      self.drop1d = nn.Dropout(0.2)
      self.bn3_4 = nn.BatchNorm2d(64)
      self.fc3_1 = nn.Linear(64 * 14 * 14, 1024)
      self.fc3_2 = nn.Linear(1024, 256)
      self.fc3_3 = nn.Linear(256, 4)
      
  def forward(self, x):
      x3_1 = self.pool3_l(F.relu(self.conv3_1(x)))
      x3_1 = self.bn3_1(x3_1)
      x3_1 = self.pool3_2(F.relu(self.conv3_2(x3_1)))
      x3_1 = self.bn3_2(x3_1)
      x3_1 = self.pool3_3(F.relu(self.conv3_3(x3_1)))
      x3_1 = self.bn3_3(x3_1)
      x3_1 = x3_1.view(-1, x3_1.size(1) * x3_1.size(2) * x3_1.size(3)) #应该是输出这个地方的特征,也就是输入到全连接层之前展平的特征
      x = F.relu(self.fc3_1(x3_1))
      x = self.drop1d(x)
      x = F.relu(self.fc3_2(x))
      x = self.drop1d(x)
      x = self.fc3_3(x)
          
      return x3_1
```python
model = Net_only()
source = torch.randn(64, 3, 128, 128)
target = torch.randn(64, 3, 128, 128)
source_fea = model(source)
target_fea = model(target)
print('source_fea shape:',source_fea.shape)
print('source_fea',source_fea)
>>>output
source_fea shape: torch.Size([64, 12544])
source_fea tensor([[-1.2664,  0.7203, -0.4250,  ..., -1.0960,  3.5884,  1.1636],
       [-0.3925,  0.6477,  0.2863,  ...,  0.3167,  0.0590, -0.7221],
       [ 0.0295, -0.1499,  0.0195,  ..., -0.8049, -1.3314, -1.4949],
       ...,
       [ 0.8359,  0.6323, -1.5111,  ...,  1.6525, -0.5096, -0.4747],
       [-1.0632, -0.6873, -0.0960,  ..., -1.5370,  1.6044, -0.6295],
       [-0.4801, -1.5111,  1.2889,  ...,  0.5461, -1.5404,  2.8153]],
      grad_fn=<ViewBackward>)

发现展平之后变成12544维了。构建AdversarialLoss类

import torch
import torch.nn as nn
from torch.autograd import Function
import torch.nn.functional as F
import numpy as np

class LambdaSheduler(nn.Module):
   def __init__(self, gamma=1.0, max_iter=1000, **kwargs):
       super(LambdaSheduler, self).__init__()
       self.gamma = gamma
       self.max_iter = max_iter
       self.curr_iter = 0

   def lamb(self):
       p = self.curr_iter / self.max_iter
       lamb = 2. / (1. + np.exp(-self.gamma * p)) - 1
       return lamb
   
   def step(self):
       self.curr_iter = min(self.curr_iter + 1, self.max_iter)

class AdversarialLoss(nn.Module):
   '''
   Acknowledgement: The adversarial loss implementation is inspired by http://transfer.thuml.ai/
   '''
   def __init__(self, gamma=1.0, max_iter=1000, use_lambda_scheduler=True, **kwargs):
       super(AdversarialLoss, self).__init__()
       self.domain_classifier = Discriminator()
       self.use_lambda_scheduler = use_lambda_scheduler
       if self.use_lambda_scheduler:
           self.lambda_scheduler = LambdaSheduler(gamma, max_iter)
       
   def forward(self, source, target):
       lamb = 1.0
       if self.use_lambda_scheduler:
           lamb = self.lambda_scheduler.lamb()
           self.lambda_scheduler.step()
       source_loss = self.get_adversarial_result(source, True, lamb)
       target_loss = self.get_adversarial_result(target, False, lamb)
       adv_loss = 0.5 * (source_loss + target_loss)
       return adv_loss
   
   def get_adversarial_result(self, x, source=True, lamb=1.0):
       x = ReverseLayerF.apply(x, lamb)
       domain_pred = self.domain_classifier(x)
       device = domain_pred.device
       if source:
           domain_label = torch.ones(len(x), 1).long()
       else:
           domain_label = torch.zeros(len(x), 1).long()
       loss_fn = nn.BCELoss()
       loss_adv = loss_fn(domain_pred, domain_label.float().to(device))
       return loss_adv
   

class ReverseLayerF(Function):
   @staticmethod
   def forward(ctx, x, alpha):
       ctx.alpha = alpha
       return x.view_as(x)
   
   @staticmethod
   def backward(ctx, grad_output):
       output = grad_output.neg() * ctx.alpha
       return output, None

class Discriminator(nn.Module):
   def __init__(self, input_dim=12544, hidden_dim=12544):  # 这里换成12544了
       super(Discriminator, self).__init__()
       self.input_dim = input_dim
       self.hidden_dim = hidden_dim
       layers = [
           nn.Linear(input_dim, hidden_dim),
           nn.BatchNorm1d(hidden_dim),
           nn.ReLU(),
           nn.Linear(hidden_dim, hidden_dim),
           nn.BatchNorm1d(hidden_dim),
           nn.ReLU(),
           nn.Linear(hidden_dim, 1),
           nn.Sigmoid()
       ]
       self.layers = torch.nn.Sequential(*layers)
   def forward(self, x):
       return self.layers(x)

下面对特征计算域分类损失函数

loss = adv(source_fea, target_fea)
print('loss:',loss)
>>>output
loss: tensor(0.7067, grad_fn=<MulBackward0>)

王晋东迁移学习代码
guo2018-Deep Convolutional Transfer Learning Network A New Method for Intelligent Fault Diagnosis of Machines With Unlabeled Data

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-02-14 21:08:29  更:2022-02-14 21:08:44 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 10:22:20-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码