| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> KL散度(Kullback-Leibler散度)笔记 -> 正文阅读 |
|
[人工智能]KL散度(Kullback-Leibler散度)笔记 |
KL散度是描述两个概率分布相似度的一种度量。 KL散度起源于信息论。信息论的主要目标是量化数据中有多少信息。信息论中最重要的指标称为熵,通常表示为H。熵没有告诉我们可以实现这种压缩的最佳编码方案。信息的最佳编码是一个非常有趣的主题,但对于理解KL散度而言不是必需的。熵的关键在于,只要知道所需位数的理论下限,我们就可以准确地量化数据中有多少信息。现在我们可以对此进行量化,当我们将观察到的分布替换为参数化的近似值时,我们丢失了多少信息。 KL散度是对熵公式的略微修改。不仅仅是有我们的概率分布p,还有近似分布q。然后,计算每个log值的差异。 本质上,我们用KL散度看的是对原始分布中的数据概率与近似分布之间的对数差的期望。再说一次,如果我们考虑log2,我们可以将其解释为“我们预计有多少比特位的信息丢失”。我们可以根据期望重写公式: 查看KL散度的更常见方法如下: ??因为 利用KL散度,我们可以精确地计算出当我们近似一个分布与另一个分布时损失了多少信息。 KL散度不是距离。KL散度不是对称的,不能使用KL散度来测量两个分布之间的距离。 |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/26 18:34:32- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |