1、数组的创建  一个常见的错误,就是调用array的时候传入多个数字参数,而不是提供单个数字的列表类型作为参数。 2、数组的基本运算 数学上的算术运算符会应用到数组的元素上,运算的对象为数组和数组、数组和算数
乘积运算符*在NumPy数组中按元素进行运算。矩阵乘积可以使用@运算符(在python> = 3.5中)或dot函数或方法执行:  3、数组的索引访问
import numpy as np
a = np.array([[1,2,3],
[4,5,6],
[7,8,9]])
print(a)
print(a[1][2], a[1,2],a[-1,-1])
输出
[[1 2 3]
[4 5 6]
[7 8 9]]
6 6 9
4、数组的切片访问  
import numpy as np
'''一维数组'''
a = np.array([0,1,2,3,4,5,6])
print('------一维数组a------')
print(a[0:2])
print('------------')
print(a[:2])
print('------------')
print(a[1:])
print('------------')
print(a[:])
print('------------')
print(a[1:-1])
print('------------')
print(a[1:-1:2])
'''二维数组'''
b = np.array([[1,2,3],
[4,5,6],
[7,8,9]])
print('------二维数组b------')
print(b[0:2,1:2])
print('------------')
print(b[:2,1:])
print('------------')
print(b[1:,1])
print('------------')
print(b[1:2,1])
print('------------')
输出:
------一维数组a------
[0 1]
------------
[0 1]
------------
[1 2 3 4 5 6]
------------
[0 1 2 3 4 5 6]
------------
[1 2 3 4 5]
------------
[1 3 5]
------二维数组b------
[[2]
[5]]
------------
[[2 3]
[5 6]]
------------
[5 8]
------------
[5]
------------
数组的维度 
|