IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【吴恩达深度学习】02_week1_quiz Practical aspects of deep learning -> 正文阅读

[人工智能]【吴恩达深度学习】02_week1_quiz Practical aspects of deep learning

(1)If you have 10,000,000 examples, how would you split the train/dev/test set?
[A] 98% train. 1% dev. 1%test
[B] 33% train. 33% dev. 33%test
[A] 60% train. 20% dev. 20%test

答案:A
解析:见视频1.1 Train/dev/test sets.

(2)The dev and test set should:
[A]Come from the same distribution.
[B]Come from different distributions.
[C]Be identical to each other (same (x,y) pairs)
[D]Have the same number of examples.

答案:A

(3)If your Neural Network model seems to have high variance, what of the following would be promising things to try?
[A]Add regularization.
[B]Make the Neural Network deeper.
[C]Get more test data.
[D]Get more training data.

答案:A,D
解析:B为减小高偏差(bias)的方法,C对方差(variance)和偏差(bias)均无影响

(4)You are working on an automated check-out kiosk for a supermarket, and are building a classifier for apples, bananas and oranges, Suppose your classifier obtains a training set error of 0.5%, and a dev set error of 7%. Which of the following are promising things to try to improve your classifier? (Check all that apply)
[A]Increase the regularization parameter lambda.
[B]Decrease the regularization parameter lambda.
[C]Get more training data.
[D]Use a bigger neural network.

答案:A,C
解析:题设条件分析可得出现了高方差现象

(5)What is weight decay?
[A]A technique to avoid vanishing gradient by imposing a ceiling on the values of the weights.
[B]A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on every iteration.
[C]The process of gradually decreasing the learning rate during training.
[D]Gradual corruption of the weights in the neural network if it is trained on noisy data.

答案:B

(6)What happens when you increase the regularization hyperparameter lambda?
[A]Weights are pushed toward becoming smaller (closer to 0)
[B]Weights are pushed toward becoming bigger (further from 0)
[C]Doubling lambda should roughly result in doubling the weights.
[D]Gradient descent taking bigger steps with each iteration (proportional to lambda)

答案:A
解析: λ \lambda λ的增大会导致,代价函数
J ( ω , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ω ) + λ 2 m ∥ ω ∥ 2 2 J(\omega, b)=\frac{1}{m} \sum_{i=1}^{m} \mathcal{L}\left(\hat{y}^{(i)}, y^{\omega}\right)+\frac{\lambda}{2 m}\|\omega\|_{2}^{2} J(ω,b)=m1?i=1m?L(y^?(i),yω)+2mλ?ω22?
λ 2 m ∥ ω ∥ 2 2 \frac{\lambda}{2 m}\|\omega\|_{2}^{2} 2mλ?ω22?这一项增大,由于要使代价函数 J ( ω , b ) J(\omega, b) J(ω,b)尽可能小,所以权重 ω \omega ω会随着训练变小


(7)With the inverted dropout technique, at test time:
[A]You apply dropout (randomly eliminating units) and do not keep the 1 k e e p _ p r o b \frac{1}{keep\_prob} keep_prob1? in the calculations used in training.
[B]You do not apply dropout (do not randomly eliminating units) and do not keep the 1 k e e p _ p r o b \frac{1}{keep\_prob} keep_prob1? in the calculations used in training.
[C]You do not apply dropout (do not randomly eliminating units) ,but keep the 1 k e e p _ p r o b \frac{1}{keep\_prob} keep_prob1? in the calculations used in training.
[D]You apply dropout (randomly eliminating units) ,but keep the 1 k e e p _ p r o b \frac{1}{keep\_prob} keep_prob1? in the calculations used in training.

答案:B
关键词:test time 测试时候
解析:测试的时候需要用到所有神经元,不然会导致测试的结果不稳定。训练的时候已经除以keep_prob来确保激活函数的期望不变,所以测试阶段不用除了

(8)Increasing the parameter keep_prob from 0.5 to 0.6 will likely cause the following:(Check the two that apply)
[A]Increasing the regularization effect.
[B]Reducing the regularization effect.
[C]Causing the neural network to end up with a higher training set error.
[D]Causing the neural network to end up with a lower training set error.

答案:B,D
解析: keep_prob从0.5提升到0.6将减少消除的神经元数量

(9)Which of these techniques are useful for reducing variance (reducing overfitting)?(Check all that apply.)
[A]Xavier initialization
[B]Gradient Checking
[C]Exploding gradient
[D]Vanishing gradient
[E]Dropout
[F]L2 regularization
[G]Data augmentation

答案:E,F,G

(10)Why do we normalize the inputs x?
[A]Normalization is another word for regularization–It helps to reduce variance
[B]It makes it easier to visualize the data.
[C]It makes the parameter initialization faster.
[D]It makes the cost function faster to optimize.

答案:D

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-02-24 15:17:23  更:2022-02-24 15:18:21 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 2:52:37-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码