IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> PMP第6版 每日工具 -> 正文阅读

[人工智能]PMP第6版 每日工具

工具列表

序号名称关键词出现的章节
2022-02-17
1焦点小组
2访谈
3市场调研
4问卷调查
2022-02-18
5抽样统计
6备选方案分析
7其他风险参数评估
8假设条件和制约因素分析
2022-02-19
9质量成本
10成本效益分析
11决策树分析
12文件分析
2022-02-20
13挣值分析
14影响图
15迭代燃尽图
16自制和外购分析
2022-02-21
17绩效审查
18过程分析
19建议书评价
20回归分析
2022-02-22
21储备分析
22风险数据质量评估
23风险概率和影响评估
24根本原因分析
2022-02-23
25敏感性分析一种定量风险分析技术,将项目结果的变化与定量风险分析模型中输入的的变化建立关联,从而确定对项目结果产生最大潜在影响的单个项目风险或其他不确定性来源11.4 实施风险定量分析
26模拟一种分析技术,通过建立模型,来综合分析各种不确定性因素,评估这些因素对目标的,潜在影响6.5 制定进度计划
11.4 实施风险定量分析
27相关方分析通过系统收集和分析各种定量与定性信息,来确定在整个项目中应该考虑哪些人的利益11.1 规划风险管理
13.1 识别相关方
13.4 监督相关方参与
28SWOT分析对一个组织、项目或备选方案的优势、劣势、机会和威胁的分析11.2 识别风险
2022-02-24
29技术绩效分析技术成果与计划相比11.7 监督风险
30趋势分析根据历史数据并利用数学模型,预测未来4.5 监控项目工作
4.7 结束项目或阶段
5.6 控制范围
6.6 控制进度
7.4 控制成本
9.6 控制资源
12.3 控制采购
31偏差分析确定实际绩效与基准的差异程度及原因4.5 监控项目工作
4.7 结束项目或阶段
5.6 控制范围
6.6 控制进度
7.4 控制成本
32假设情景分析对各种情景进行评估,预测它们对项目目标的影响6.5 指定进度计划
6.6 控制进度
2022-02-25
33概率和影响矩阵把每个风险发生的概率和一旦发生对项目目标的影响映射起来11.3 实施风险定性分析
34相关方参与度评估矩阵将当前与期望的相关方参与程度进行比较10.1 规划沟通管理
10.3 监督沟通
13.2 规划相关方参与
13.4 监督相关放参与
35相关方映射分析/表现利用不同方法对相关方进行分类的方法13.1 识别相关方
36流程图对某系统内的一个或多个过程的输入、过程行为和输出的图形描述8.1 规划质量管理
8.2 管理质量

|25|敏感性分析|11.4

11.4
敏感性分析有助于确定哪些单个项目风险或其他不确定性来源对项目结果具有最大的潜在影响。它在项目结果变异与定量风险分析模型中的要素变异之间建立联系。
敏感性分析的结果通常用龙卷风图来表示。在该图中,标出定量风险分析模型中的每项要素与其能影响的项目结果之间的关联系数。这些要素可包括单个项目风险、易变的项目活动,或具体的不明确性来源。每个要素按关联强度降序排列,形成典型的龙卷风形状。龙卷风图示例,见下图。

Example_Tornado_Diagram_ZH

11.4
One typical display of sensitivity analysis is the tornado diagram, which presents the calculated correlation coefficient for each element of the quantitative risk analysis model that can influence the project outcome. This can include individual project risks, project activities with high degrees of variability, or specific sources of ambiguity. Items are ordered by descending strength of correlation, giving the typical tornado appearance. An example tornado diagram is shown in following.
Sensitivity analysis helps to determine which individual project risks or other sources of uncertainty have the most potential impact on project outcomes. It correlates variations in project outcomes with variations in elements of the quantitative risk analysis model.

Example_Tornado_Diagram_EN

|26|模拟|6.5 11.4

6.5
模拟是把单个项目风险和不确定性的其他来源模型化的方法,以评估它们对项目目标的潜在影响。最常见的模拟技术是蒙特卡罗分析(见 11.4.2.5 节),它利用风险和其他不确定资源计算整个项目可能的进度结果。模拟包括基于多种不同的活动假设、制约因素、风险、问题或情景,使用概率分布和不确定性的其他表现形式(见 11.4.2.4 节),来计算出多种可能的工作包持续时间。图 6-18 显示了一个项目的概率分布,表明实现特定目标日期(即项目完成日期)的可能性。在这个例子中,项目按时或在目标日期,即 5 月 13 日之前完成的概率是 10%,而在 5 月 28 日之前完成的概率是 90%。
有关蒙特卡洛模拟如何用于进度模型的更多信息,请参见《进度计划实践标准》。
Example_Probability_Distribution_of_a_Target_Milestone_ZH
11.4
在定量风险分析中,使用模型来模拟单个项目风险和其他不确定性来源的综合影响,以评估它们对项目目标的潜在影响。模拟通常采用蒙特卡洛分析。对成本风险进行蒙特卡洛分析时,使用项目成本估算作为模拟的输入;对进度风险进行蒙特卡洛分析时,使用进度网络图和持续时间估算作为模拟的输入。开展综合定量成本-进度风险分析时,同时使用这两种输入。其输出就是定量风险分析模型。
用计算机软件数千次迭代运行定量风险分析模型。每次运行,都要随机选择输入值(如成本估算、持续时间估算或概率分支发生频率)。这些运行的输出构成了项目可能结果(如项目结束日期、项目完工成本)的区间。典型的输出包括:表示模拟得到特定结果的次数的直方图,或表示获得等于或小于特定数值的结果的累积概率分布曲线(S 曲线)。蒙特卡洛成本风险分析所得到的 S 曲线示例,见下图。
Example_S-Curve_from_Quantitative_Cost_Risk_Analysis_ZH
在定量进度风险分析中,还可以执行关键性分析,以确定风险模型的哪些活动对项目关键路径的影响最大。对风险模型中的每一项活动计算关键性指标,即:在全部模拟中,该活动出现在关键路径上的频率,通常以百分比表示。通过关键性分析,项目团队就能够重点针对那些对项目整体进度绩效存在最大潜在影响的活动,来规划风险应对措施。

6.5
Simulation models the combined effects of individual project risks and other sources of uncertainty to evaluate their potential impact on achieving project objectives. The most common simulation technique is Monte Carlo analysis (see Section 11.4.2.5), in which risks and other sources of uncertainty are used to calculate possible schedule outcomes for the total project. Simulation involves calculating multiple work package durations with different sets of activity assumptions, constraints, risks, issues, or scenarios using probability distributions and other representations of uncertainty (see Section 11.4.2.4). Figure 6-18 shows a probability distribution for a project with the probability of achieving a certain target date (i.e., project finish date). In this example, there is a 10% probability that the project will finish on or before the target date of May 13, while there is a 90% probability of completing the project by May 28.
For more information on how Monte Carlo simulation is used for schedule models, see the Practice Standard for Scheduling.
Example_Probability_Distribution_of_a_Target_Milestone_EN
11.4
Quantitative risk analysis uses a model that simulates the combined effects of individual project risks and other sources of uncertainty to evaluate their potential impact on achieving project objectives. Simulations are typically performed using a Monte Carlo analysis. When running a Monte Carlo analysis for cost risk, the simulation uses the project cost estimates. When running a Monte Carlo analysis for schedule risk, the schedule network diagram and duration estimates are used. An integrated quantitative cost-schedule risk analysis uses both inputs. The output is a quantitative risk analysis model.
Computer software is used to iterate the quantitative risk analysis model several thousand times. The input values (e.g., cost estimates, duration estimates, or occurrence of probabilistic branches) are chosen at random for each iteration. Outputs represent the range of possible outcomes for the project (e.g., project end date, project cost at completion). Typical outputs include a histogram presenting the number of iterations where a particular outcome resulted from the simulation, or a cumulative probability distribution (S-curve) representing the probability of achieving any particular outcome or less. An example S-curve from a Monte Carlo cost risk analysis is shown in Figure 11-13.
Example_S-Curve_from_Quantitative_Cost_Risk_Analysis_EN
For a quantitative schedule risk analysis, it is also possible to conduct a criticality analysis that determines which elements of the risk model have the greatest effect on the project critical path. A criticality index is calculated for each element in the risk model, which gives the frequency with which that element appears on the critical path during the simulation, usually expressed as a percentage. The output from a criticality analysis allows the project team to focus risk response planning efforts on those activities with the highest potential effect on the overall schedule performance of the project.

|27|相关方分析|11.1 13.1 13.4

11.1
可用于本过程的数据分析技术包括(但不限于)相关方分析(见 13.1.2.3 节)。可通过相关方分析确定项目相关方的风险偏好。
13.1
相关方分析会产生相关方清单和关于相关方的各种信息,例如,在组织内的位置、在项目中的角色、与项目的利害关系、期望、态度(对项目的支持程度),以及对项目信息的兴趣。相关方的利害关系可包括(但不限于)以下各条的组合:

  • 兴趣。 个人或群体会受与项目有关的决策或成果的影响。
  • 权利(合法权利或道德权利)。 国家的法律框架可能已就相关方的合法权利做出规定,如职业健康和安全。道德权利可能涉及保护历史遗迹或环境的可持续性。
  • 所有权。 人员或群体对资产或财产拥有的法定所有权。
  • 知识。 专业知识有助于更有效地达成项目目标和组织成果,或有助于了解组织的权力结构,从而有益于项目。
  • 贡献。 提供资金或其他资源,包括人力资源,或者以无形方式为项目提供支持,例如,宣传项目目标,或在项目与组织权力结构及政治之间扮演缓冲角色。

13.4
开展相关方分析,确定相关方群体和个人在项目任何特定时间的状态。

11.1
Data analysis techniques that can be used for this process includes but are not limited to a stakeholder analysis (Section 13.1.2.3) to determine the risk appetite of project stakeholders.
13.1
Stakeholder analysis results in a list of stakeholders and relevant information such as
their positions in the organization, roles on the project, “stakes,” expectations, attitudes (their levels of support for the project), and their interest in information about the project. Stakeholders’ stakes can include but are not limited to a combination of:

  • Interest. A person or group can be affected by a decision related to the project or its outcomes.
  • Rights (legal or moral rights). Legal rights, such as occupational health and safety, may be defined in the legislation framework of a country. Moral rights may involve concepts of protection of historical sites or environmental sustainability.
  • Ownership. A person or group has a legal title to an asset or a property.
  • Knowledge. Specialist knowledge, which can benefit the project through more effective delivery of project objectives, organizational outcomes, or knowledge of the power structures of the organization.
  • Contribution. Provision of funds or other resources, including human resources, or providing support for the project in more intangible ways, such as advocacy in the form of promoting the objectives of the project or acting as a buffer between the project and the power structures of the organization and its politics.

13.4
The stakeholder analysis helps to determine the position of stakeholder groups and individuals at any particular time in the project.

|28|SWOT分析|11.2

11.2
这是对项目的优势、劣势、机会和威胁 (SWOT) 进行逐个检查。在识别风险时,它会将内部产生的风险包含在内,从而拓宽识别风险的范围。首先,关注项目、组织或一般业务领域,识别出组织的优势和劣势;然后,找出组织优势可能为项目带来的机会,组织劣势可能造成的威胁。还可以分析组织优势能在多大程度上克服威胁,组织劣势是否会妨碍机会的产生。

11.2
This technique examines the project from each of the strengths, weaknesses, opportunities, and threats (SWOT) perspectives. For risk identification, it is used to increase the breadth of identified risks by including internally generated risks. The technique starts with the identification of strengths and weaknesses of the organization, focusing on either the project, organization, or the business area in general. SWOT analysis then identifies any opportunities for the project that may arise from strengths, and any threats resulting from weaknesses. The analysis also examines the degree to which organizational strengths may offset threats and determines if weaknesses might hinder opportunities.

|29|技术绩效分析|11.7

开展技术绩效分析,把项目执行期间所取得的技术成果与取得相关技术成果的计划进行比较。它要求定义关于技术绩效的客观的、量化的测量指标,以便据此比较实际结果与计划要求。技术绩效测量指标可能包括:重量、处理时间、缺陷数量、储存容量等。实际结果偏离计划的程度可以代表威胁或机会的潜在影响。
Technical performance analysis compares technical accomplishments during project execution to the schedule of technical achievement. It requires the definition of objective, quantifiable measures of technical performance, which can be used to compare actual results against targets. Such technical performance measures may include weight, transaction times, number of delivered defects, storage capacity, etc. Deviation can indicate the potential impact of threats or opportunities.

|30|趋势分析|4.5,4.7,5.6,6.6,7.4,9.6,12.3

4.5
趋势分析根据以往结果预测未来绩效,它可以预测项目的进度延误,提前让项目经理意识到,按照既定趋势发展,后期进度可能出现的问题。应该在足够早的项目时间进行趋势分析,使项目团队有时间分析和纠正任何异常。可以根据趋势分析的结果,提出必要的预防措施建议。
4.7
趋势分析可用于确认组织所用模式的有效性,并且为了未来项目而进行相应的模式调整。
5.6
趋势分析旨在审查项目绩效随时间的变化情况,以判断绩效是正在改善还是正在恶化。
6.6
趋势分析检查项目绩效随时间的变化情况,以确定绩效是在改善还是在恶化。图形分析技术有助于理解截至目前的绩效,并与未来的绩效目标(表示为完工日期)进行对比。
7.4
趋势分析旨在审查项目绩效随时间的变化情况,以判断绩效是正在改善还是正在恶化。图形分析技术有助于了解截至目前的绩效情况,并把发展趋势与未来的绩效目标进行比较,如 BAC 与EAC、预测完工日期与计划完工日期的比较。趋势分析技术包括(但不限于):

  • 图表。
    在挣值分析中,对计划价值、挣值和实际成本这三个参数,既可以分阶段(通常以周或月为单位)进行监督和报告,也可以针对累计值进行监督和报告。图 7-12 以 S 曲线展示了某个项目的 EV 数据,该项目预算超支且进度落后。
    挣值、计划价值和实际成本

  • 预测。
    随着项目进展,项目团队可根据项目绩效,对完工估算(EAC)进行预测,预测的结
    果可能与完工预算(BAC)存在差异。如果 BAC 已明显不再可行,则项目经理应考虑对EAC进行预测。预测EAC是根据当前掌握的绩效信息和其他知识,预计项目未来的情况和事件。预测要根据项目执行过程中所提供的工作绩效数据(见 4.3.3.2 节)来产生、更新和重新发布。工作绩效信息包含项目过去的绩效,以及可能在未来对项目产生影响的任何信息。在计算 EAC 时,通常用已完成工作的实际成本,加上剩余工作的完工尚需估算(ETC)。项目团队要根据已有的经验,考虑实施 ETC 工作可能遇到的各种情况。把挣值分析与手工预测 EAC 方法联合起来使用,效果会更佳。由项目经理和项目团队手工进行的自下而上汇总方法,就是一种最普通的 EAC 预测方法。
    项目经理所进行的自下而上的 EAC 估算,就是以已完成工作的实际成本为基础,并根据已积累的经验来为剩余项目工作编制一个新估算。公式: EAC = AC + 自下而上的 ETC。可以很方便地把项目经理手工估算的 EAC 与计算得出的一系列 EAC 作比较,这些计算得出的EAC 代表了不同的风险情景。在计算 EAC 值时,经常会使用累计 CPI 和累计 SPI 值。尽管可以用许多方法来计算基于 EVM 数据的 EAC 值,但下面只介绍最常用的三种方法:

    • 假设将按预算单价完成?ETC?工作。 这种方法承认以实际成本表示的累计实际项目绩效(不论好坏),并预计未来的全部?ETC?工作都将按预算单价完成。如果目前的实际绩效不好,则只有在进行项目风险分析并取得有力证据后,才能做出“未来绩效将会改进”的假设。公式: EAC = AC +(BAC – EV)。
    • 假设以当前 CPI 完成 ETC 工作。 这种方法假设项目将按截至目前的情况继续进行,即 ETC工作将按项目截至目前的累计成本绩效指数(CPI)实施。 公式: EAC = BAC/CPI。
    • 假设 SPI 与 CPI 将同时影响 ETC 工作。 在这种预测中,需要计算一个由成本绩效指数与进度绩效指数综合决定的效率指标,并假设?ETC?工作将按该效率指标完成。如果项目进度对?ETC?有重要影响,这种方法最有效。使用这种方法时,还可以根据项目经理的判断,分别给 CPI 和 SPI 赋予不同的权重,如 80/20、 50/50 或其他比率。公式: EAC =AC +[(BAC – EV)/(CPI x SPI)]。

9.6
在项目进展过程中,项目团队可能会使用趋势分析,基于当前绩效信息来确定未来项目阶段所需的资源。趋势分析检查项目绩效随时间的变化情况,可用于确定绩效是在改善还是在恶化。
12.3
趋势分析可用于编制关于成本绩效的完工估算 (EAC),以确定绩效是正在改善还是恶化。关于完工估算方法的详细信息。

4.5
Trend analysis is used to forecast future performance based on past results. It looks ahead in the project for expected slippages and warns the project manager ahead of time that there may be problems later in the schedule if established trends persist. This information is made available early enough in the project timeline to give the project team time to analyze and correct any anomalies. The results of trend analysis can be used to recommend preventive actions if necessary.
4.7
Trend analysis can be used to validate the models used in the organization and to implement adjustments for future projects.
5.6
Trend analysis examines project performance over time to determine if performance is improving or deteriorating.
6.6
Trend analysis examines project performance over time to determine whether performance is improving or deteriorating. Graphical analysis techniques are valuable for understanding performance to date and for comparing to future performance goals in the form of completion dates.
7.4
rend analysis examines project performance over time to determine if performance is improving or deteriorating. Graphical analysis techniques are valuable for understanding performance to date and for comparison to future performance goals in the form of BAC versus estimate at completion (EAC) and completion dates. Examples of the trend analysis techniques include but are not limited to:

  • Charts. In earned value analysis, three parameters of planned value, earned value, and actual cost can be monitored and reported on both a period-by-period basis (typically weekly or monthly) and on a cumulative basis. Figure 7-12 uses S-curves to display EV data for a project that is performing over budget and behind the schedule.
    Earned Value, Planned Value, and Actual Costs

  • Forecasting. As the project progresses, the project team may develop a forecast for the estimate at completion (EAC) that may differ from the budget at completion (BAC) based on the project performance. If it becomes obvious that the BAC is no longer viable, the project manager should consider the forecasted EAC. Forecasting the EAC involves making projections of conditions and events in the project’s future based on current performance information and other knowledge available at the time of the forecast. Forecasts are generated, updated, and reissued based on work performance data (Section 4.3.3.2) that is provided as the project is
    executed. The work performance information covers the project’s past performance and any information that could impact the project in the future.
    EACs are typically based on the actual costs incurred for work completed, plus an estimate to complete (ETC) the remaining work. It is incumbent on the project team to predict what it may encounter to perform the ETC, based on its experience to date. Earned value analysis works well in conjunction with manual forecasts of the required EAC costs. The most common EAC forecasting approach is a manual, bottom-up summation by the project manager and project team.
    The project manager’s bottom-up EAC method builds upon the actual costs and experience incurred for the work completed, and requires a new estimate to complete the remaining project work. Equation: EAC = AC + Bottom-up ETC.
    The project manager’s manual EAC is quickly compared with a range of calculated EACs representing various risk scenarios. When calculating EAC values, the cumulative CPI and SPI values are typically used. While EVM data quickly provide many statistical EACs, only three of the more common methods are described as follows:
    EAC forecast for ETC work performed at the budgeted rate. This EAC method accepts the actual project performance to date (whether favorable or unfavorable) as represented by the actual costs, and predicts that all future ETC work will be accomplished at the budgeted rate. When actual performance is unfavorable, the assumption that future performance will improve should be accepted only when supported by project risk analysis. Equation: EAC = AC + (BAC – EV).
    EAC forecast for ETC work performed at the present CPI. This method assumes that what the project has experienced to date can be expected to continue in the future. The ETC work is assumed to be performed at the same cumulative cost performance index (CPI) as that incurred by the project to date. Equation: EAC = BAC / CPI.
    EAC forecast for ETC work considering both SPI and CPI factors. In this forecast, the ETC work will be performed at an efficiency rate that considers both the cost and schedule performance indices. This method is most useful when the project schedule is a factor impacting the ETC effort. Variations of this method weight the CPI and SPI at different values (e.g., 80/20, 50/50, or some other ratio) according to the project manager’s judgment. Equation: EAC = AC + [(BAC – EV) / (CPI × SPI)].
    9.6
    As the project progresses, the project team may use trend analysis, based on current performance information, to determine the resources needed at upcoming stages of the project.
    Trend analysis examines project performance over time and can be used to determine whether performance is improving or deteriorating.
    12.3
    Trend analysis can develop a forecast estimate at completion (EAC) for cost performance to see if performance is improving or deteriorating. See 7.4.2.2 for more detail on EAC methods.

|31|偏差分析|4.5,4.7,5.6,6.6,7.4

4.5
偏差分析审查目标绩效与实际绩效之间的差异(或偏差),可涉及持续时间估算、成本估算、资源使用、资源费率、技术绩效和其他测量指标。
可以在每个知识领域,针对特定变量,开展偏差分析。在监控项目工作过程中,通过偏差分析对成本、时间、技术和资源偏差进行综合分析,以了解项目的总体偏差情况。这样就便于采取合适的预防或纠正措施。
4.7
偏差分析可通过比较计划目标与最终结果来改进组织的测量指标。
5.6
偏差分析用于将基准与实际结果进行比较,以确定偏差是否处于临界值区间内或是否有必要采取纠正或预防措施。
6.6
偏差分析关注实际开始和完成日期与计划的偏离,实际持续时间与计划的差异,以及浮动时间的偏差。它包括确定偏离进度基准(见 6.5.3.1 节)的原因与程度,评估这些偏差对未来工作的影响,以及确定是否需要采取纠正或预防措施。例如,非关键路径上的某个活动发生较长时间的延误,可能不会对整体项目进度产生影响;而某个关键或次关键活动的稍许延误,却可能需要立即采取行动。
7.4
偏差分析用以解释成本偏差(CV = EV – AC)、进度偏差(SV = EV – PV)和完工偏差(VAC = BAC – EAC)的原因、影响和纠正措施。成本和进度偏差是最需要分析的两种偏差。对于不使用正规挣值分析的项目,可开展类似的偏差分析,通过比较计划成本和实际成本,来识别成本基准与实际项目绩效之间的差异;然后可以实施进一步的分析,以判定偏离进度基准的原因和程度,并决定是否需要采取纠正或预防措施。可通过成本绩效测量来评价偏离原始成本基准的程度。项目成本控制的重要工作包括:判定偏离成本基准(见 7.3.3.1 节)的原因和程度,并决定是否需要采取纠正或预防措施。随着项目工作的逐步完成,偏差的可接受范围(常用百分比表示)将逐步缩小。偏差分析包括(但不限于):

  • 进度偏差。 进度偏差(SV)是测量进度绩效的一种指标,表示为挣值与计划价值之差。它是指在某个给定的时点,项目提前或落后的进度,它是测量项目进度绩效的一种指标,等于挣值(EV)减去计划价值(PV)。 EVA 进度偏差是一种有用的指标,可表明项目进度是落后还是提前于进度基准。当项目完工时,全部的计划价值都将实现(即成为挣值),所以 EVA 进度偏差最终将等于零。最好把进度偏差与关键路径法 (CPM) 和风险管理一起使用。公式: SV = EV – PV。
  • 成本偏差。 成本偏差(CV)是在某个给定时点的预算亏空或盈余量,表示为挣值与实际成本之差。它是测量项目成本绩效的一种指标,等于挣值(EV)减去实际成本(AC)。项目结束时的成本偏差,就是完工预算(BAC)与实际成本之间的差值。由于成本偏差指明了实际绩效与成本支出之间的关系,所以非常重要。负的 CV 一般都是不可挽回的。公式: CV = EV – AC。
  • 进度绩效指数。 进度绩效指数(SPI)是测量进度效率的一种指标,表示为挣值与计划价值之比,反映了项目团队完成工作的效率。有时与成本绩效指数(CPI)一起使用,以预测项目的最终完工估算。当 SPI 小于 1.0 时,说明已完成的工作量未达到计划要求;当 SPI 大于1.0 时,则说明已完成的工作量超过计划。由于 SPI 测量的是项目的总工作量,所以还需要对关键路径上的绩效进行单独分析,以确认项目是否将比计划完成日期提前或推迟完工。 SPI等于 EV 与 PV 的比值。公式: SPI = EV/PV。
  • 成本绩效指数。 成本绩效指数(CPI)是测量预算资源的成本效率的一种指标,表示为挣值与实际成本之比。它是最关键的 EVA 指标,用来测量已完成工作的成本效率。当 CPI 小于 1.0时,说明已完成工作的成本超支;当 CPI 大于 1.0 时,则说明到目前为止成本有结余。 CPI 等
    于 EV 与 AC 的比值。公式: CPI = EV/AC。

4.5
Variance analysis reviews the differences (or variance) between planned and actual performance. This can include duration estimates, cost estimates, resources utilization, resources rates, technical performance, and other metrics.
Variance analysis may be conducted in each Knowledge Area based on its particular variables. In Monitor and
Control Project Work, the variance analysis reviews the variances from an integrated perspective considering
cost, time, technical, and resource variances in relation to each other to get an overall view of variance on the project. This allows for the appropriate preventive or corrective actions to be initiated.
4.7
Variance analysis can be used to improve the metrics of the organization by comparing what was initially planned and the end result.
5.6
Variance analysis is used to compare the baseline to the actual results and determine if the variance is within the threshold amount or if corrective or preventive action is appropriate.
6.6
Variance analysis looks at variances in planned versus actual start and finish dates, planned
versus actual durations, and variances in float. Part of variance analysis is determining the cause and degree of variance relative to the schedule baseline (see Section 6.5.3.1), estimating the implications of those variances for future work to completion, and deciding whether corrective or preventive action is required. For example, a major delay on any activity not on the critical path may have little effect on the overall project schedule, while a much shorter delay on a critical or near-critical activity may require immediate action.
7.4
Variance analysis, as used in EVM, is the explanation (cause, impact, and corrective actions) for cost (CV = EV – AC), schedule (SV = EV – PV), and variance at completion (VAC = BAC – EAC) variances. Cost and schedule variances are the most frequently analyzed measurements. For projects not using formal earned value analysis, similar variance analyses can be performed by comparing planned cost against actual cost to identify variances between the cost baseline and actual project performance. Further analysis can be performed to determine the cause and degree of variance relative to the schedule baseline and any corrective or preventive actions needed. Cost performance measurements are used to assess the magnitude of variation to the original cost baseline. An important aspect of project cost control includes etermining the cause and degree of variance relative to the cost baseline (see Section 7.3.3.1) and deciding whether corrective or preventive action is required. The percentage range of acceptable variances will tend to decrease as more work is accomplished. Examples of variance analysis include but are not limited to:
Schedule variance. Schedule variance (SV) is a measure of schedule performance expressed as the difference between the earned value and the planned value. It is the amount by which the project is ahead or behind the planned delivery date, at a given point in time. It is a measure of schedule performance on a project. It is equal to the earned value (EV) minus the planned value (PV). The EVA schedule variance is a useful metric in that it can indicate when a project is falling behind or is ahead of its baseline schedule. The EVA schedule variance will ultimately equal zero when the project is completed because all of the planned values will have been earned. Schedule variance is best used in conjunction with critical path method (CPM) scheduling and risk management. Equation: SV = EV – PV.
Cost variance. Cost variance (CV) is the amount of budget deficit or surplus at a given point in time*, expressed as the difference between earned value and the actual cost. It is a measure of cost performance on a project. It is equal to the earned value (EV) minus the actual cost (AC). The cost variance at the end of the project will be the difference between the budget at completion (BAC) and the actual amount spent. The CV is particularly critical because it indicates the relationship of physical performance to the costs spent. Negative CV is often difficult for the project to recover. Equation: CV = EV – AC.
Schedule performance index。 The schedule performance index (SPI) is a measure of schedule efficiency expressed as the ratio of earned value to planned value. It measures how efficiently the project team is accomplishing the work. It is sometimes used in conjunction with the cost performance index (CPI) to forecast the final project completion estimates. An SPI value less than 1.0 indicates less work was completed than was planned. An SPI greater than 1.0 indicates that more work was completed than was planned. Since the SPI measures all project work, the performance on the critical path also needs to be analyzed to determine whether the project will finish ahead of or behind its planned finish date. The SPI is equal to the ratio of the EV to the PV. Equation: SPI = EV/PV.
Cost performance index. The cost performance index (CPI) is a measure of the cost efficiency of budgeted resources, expressed as a ratio of earned value to actual cost. It is considered the most critical EVA metric and measures the cost efficiency for the work completed. A CPI value of less than 1.0 indicates a cost overrun for work completed. A CPI value greater than 1.0 indicates a cost underrun of performance to date. The CPI is equal to the ratio of the EV to the AC. Equation: CPI = EV/AC.

|32|假设情景分析|6.5, 6.6

6.5
假设情景分析是对各种情景进行评估,预测它们对项目目标的影响(积极或消极的)。假设情景分析就是对“如果情景 X 出现,情况会怎样?”这样的问题进行分析,即基于已有的进度计划,考虑各种各样的情景。例如,推迟某主要部件的交货日期,延长某设计工作的时间,或加入外部因素(如罢工或许可证申请流程变化等)。可以根据假设情景分析的结果,评估项目进度计划在不同条件下的可行性,以及为应对意外情况的影响而编制进度储备和应对计划。
6.6
假设情景分析基于项目风险管理过程的输出,对各种不同的情景进行评估,促使进度模型符合项目管理计划和批准的基准。

6.5
What-if scenario analysis is the process of evaluating scenarios in order to predict their effect, positive or negative, on project objectives. This is an analysis of the question, “What if the situation represented by scenario X happens?” A schedule network analysis is performed using the schedule to compute the different scenarios, such as delaying a major component delivery, extending specific engineering durations, or introducing external factors, such as a strike or a change in the permit process. The outcome of the what-if scenario analysis can be used to assess the feasibility of the project schedule under different conditions, and in preparing schedule reserves and response plans to address the impact of unexpected situations.
6.6
What-if scenario analysis is used to assess the various scenarios guided by the output from the Project Risk Management processes to bring the schedule model into alignment with the project management plan and approved baseline.

|33|概率和影响矩阵|11.3

11.3
组织可在项目开始前确定优先级排序规则,并将其纳入组织过程资产,或者也可为具体项目量身定制优先级排序规则。在常见的概率和影响矩阵中,会同时列出机会和威胁;以正面影响定义机会,以负面影响定义威胁。概率和影响可以用描述性术语(如很高、高、中、低和很低)或数值来表达。如果使用数值,就可以把两个数值相乘,得出每个风险的概率 - 影响分值,以便据此在每个优先级组别之内排列单个风险相对优先级。下图是概率和影响矩阵的示例,其中也有数值风险评分的可能方法。

概率和影响矩阵是把每个风险发生的概率和一旦发生对项目目标的影响映射起来的表格。此矩阵对概率和影响进行组合,以便于把单个项目风险划分成不同的优先级组别(见图 11-5)。基于风险的概率和影响,对风险进行优先级排序,以便未来进一步分析并制定应对措施。采用风险管理计划中规定的风险概率和影响定义,逐一对单个项目风险的发生概率及其对一项或多项项目目标的影响(若发生)进行评估。然后,基于所得到的概率和影响的组合,使用概率和影响矩阵,来为单个项目风险分配优先级别。
组织可针对每个项目目标(如成本、时间和范围)制定单独的概率和影响矩阵,并用它们来评估风险针对每个目标的优先级别。组织还可以用不同的方法为每个风险确定一个总体优先级别。即可综合针对不同目标的评估结果,也可采用最高优先级别(无论针对哪个目标),作为风险的总体优先级别。

Example_Probability_and_Impact_Matrix_with_Scoring_Scheme_ZH

11.3
Prioritization rules may be specified by the organization in advance of the project and be included in organizational process assets, or they may be tailored to the specific project. Opportunities and threats are represented in a common probability and impact matrix using positive definitions of impact for opportunities and negative impact definitions for threats. Descriptive terms (such as very high, high, medium, low, and very low) or numeric values can be used for probability and impact. Where numeric values are used, these can be multiplied to give a probability-impact score for each risk, which allows the relative priority of individual risks to be evaluated within each priority level. An example probability and impact matrix is presented in Figure 11-5, which also shows a possible numeric risk scoring scheme.
A probability and impact matrix is a grid for mapping the probability of each risk occurrence and its impact on project objectives if that risk occurs. This matrix specifies combinations of probability and impact that allow individual project risks to be divided into priority groups (see Figure 11-5). Risks can be prioritized for further analysis and planning of risk responses based on their probability and impacts. The probability of occurrence for each individual project risk is assessed as well as its impact on one or more project objectives if it does occur, using definitions of probability and impact for the project as specified in the risk management plan. Individual project risks are assigned to a priority level based on the combination of their assessed probability and impact, using a probability and impact matrix.
An organization can assess a risk separately for each objective (e.g., cost, time, and scope) by having a separate probability and impact matrix for each. Alternatively, it may develop ways to determine one overall priority level for each risk, either by combining assessments for different objectives, or by taking the highest priority level regardless of which objective is affected.

Example_Probability_and_Impact_Matrix_with_Scoring_Scheme_EN

|34|相关方参与度评估矩阵|10.1 10.3 13.2 13.4

10.1
适用于本过程的数据表现技术包括(但不限于)相关方参与度评估矩阵。见 13.2.2.5 节。如图 13-6所示,相关方参与度评估矩阵显示了个体相关方当前和期望参与度之间的差距。在本过程中,可进一步分析该评估矩阵,以便为填补参与度差距而识别额外的沟通需求(除常规报告以外的)。
10.3
适用的数据表现技术包括(但不限于)相关方参与度评估矩阵(见 13.2.2.5 节)。它可以提供与沟通活动效果有关的信息。应该检查相关方的期望与当前参与度的变化情况,并对沟通进行必要调整。
13.2
相关方参与度评估矩阵用于将相关方当前参与水平与期望参与水平进行比较。对相关方参与水平进行分类的方式之一,如下图所示。相关方参与水平可分为如下:

  • 不了解型。 不知道项目及其潜在影响。
  • 抵制型。 知道项目及其潜在影响,但抵制项目工作或成果可能引发的任何变更。此类相关方不会支持项目工作或项目成果。
  • 中立型。 了解项目,但既不支持,也不反对。
  • 支持型。 了解项目及其潜在影响,并且会支持项目工作及其成果。
  • 领导型。 了解项目及其潜在影响,而且积极参与以确保项目取得成功。
    在下图中, C 代表每个相关方的当前参与水平,而 D 是项目团队评估出来的、为确保项目成功所必不可少的参与水平(期望的)。应根据每个相关方的当前与期望参与水平的差距,开展必要的沟通,有效引导相关方参与项目。弥合当前与期望参与水平的差距是监督相关方参与中的一项基本工作。
    Stakeholder_Engagement_Assessment_Matrix_ZH

13.4
适用于本过程的数据表现技术包括(但不限于)相关方参与度评估矩阵。见 13.2.2.3 节。使用相关方参与度评估矩阵,来跟踪每个相关方参与水平的变化,对相关方参与加以监督。

10.1
A data representation technique that can be used for this process includes but is not limited to a stakeholder engagement assessment matrix. Described in Section 13.2.2.5. The stakeholder engagement assessment matrix, shown in Figure 13-6, displays gaps between current and desired engagement levels of individual stakeholders, it can be further analyzed in this process to identify additional communication requirements (beyond the regular reports) as a method to close any engagement level gaps.
10.3
A data representation technique that can be used includes but is not limited to the stakeholder engagement assessment matrix (Section 13.2.2.5), which can provide information about the effectiveness of the communications
activities. This is achieved by reviewing changes between desired and current engagement and adjusting communications as necessary.
13.2
u Stakeholder engagement assessment matrix. A stakeholder engagement assessment matrix supports comparison between the current engagement levels of stakeholders and the desired engagement levels required
for successful project delivery. One way to classify the engagement level of stakeholders is shown in Figure 13-6. The engagement level of stakeholders can be classified as follows:

  • Unaware. Unaware of the project and potential impacts.
  • Resistant. Aware of the project and potential impacts but resistant to any changes that may occur as a result of the work or outcomes of the project. These stakeholders will be unsupportive of the work or outcomes of the project.
  • Neutral. Aware of the project, but neither supportive nor unsupportive.
  • Supportive. Aware of the project and potential impacts and supportive of the work and its outcomes.
  • Leading. Aware of the project and potential impacts and actively engaged in ensuring that the project is a success.
    In Figure 13-6, C represents the current engagement level of each stakeholder and D indicates the level that the project team has assessed as essential to ensure project success (desired). The gap between current and desired for each stakeholder will direct the level of communications necessary to effectively engage the stakeholder. The closing of this gap between current and desired is an essential element of monitoring stakeholder engagement.
    Stakeholder_Engagement_Assessment_Matrix_EN

13.4
A data representation technique used in this process includes but is not limited to a stakeholder engagement assessment matrix. Described in Section 13.2.2.3. The stakeholder engagement assessment matrix monitors stakeholder engagement through tracking changes in level of engagement for each stakeholder.

|35|相关方映射分析/表现|13.1

13.1
适用于本过程的数据表现技术包括(但不限于)相关方映射分析/表现。相关方映射分析和表现是一种利用不同方法对相关方进行分类的方法。对相关方进行分类有助于团队与已识别的项目相关方建立关系。常见的分类方法包括:

  • 权力利益方格、权力影响方格,或作用影响方格。 基于相关方的职权级别(权力)、对项目成果的关心程度(利益)、对项目成果的影响能力(影响),或改变项目计划或执行的能力,每一种方格都可用于对相关方进行分类。对于小型项目、相关方与项目的关系很简单的项目,
    或相关方之间的关系很简单的项目,这些分类模型非常实用。
  • 相关方立方体。 这是上述方格模型的改良形式。本立方体把上述方格中的要素组合成三维模型,项目经理和团队可据此分析相关方并引导相关方参与项目。作为一个多维模型,它将相关方视为一个多维实体,更好地加以分析,从而有助于沟通策略的制定。
  • 凸显模型。 通过评估相关方的权力(职权级别或对项目成果的影响能力)、紧迫性(因时间约束或相关方对项目成果有重大利益诉求而导致需立即加以关注)和合法性(参与的适当性),对相关方进行分类。在凸显模型中,也可以用邻近性取代合法性,以便考察相关方参与项目工作的程度。这种凸显模型适用于复杂的相关方大型社区,或在相关方社区内部存在复杂的关系网络。凸显模型可用于确定已识别相关方的相对重要性。
  • 影响方向。 可以根据相关方对项目工作或项目团队本身的影响方向,对相关方进行分类。可以把相关方分类为:
    • 向上(执行组织或客户组织、发起人和指导委员会的高级高级管理层);
    • 向下(临时贡献知识或技能的团队或专家);
    • 向外(项目团队外的相关方群体及其代表,如供应商、政府部门、公众、最终用户和监管部门);或
    • 横向(项目经理的同级人员,如其他项目经理或中层管理人员,他们与项目经理竞争稀缺项目资源或者合作共享资源或信息)。
  • 优先级排序。 如果项目有大量相关方、相关方社区的成员频繁变化,相关方和项目团队之间或相关方社区内部的关系复杂,可能有必要对相关方进行优先级排序。

13.1
A data representation technique that may be used in this process includes but is not limited to stakeholder mapping/ representation. Stakeholder mapping and representation is a method of categorizing stakeholders using various
methods. Categorizing stakeholders assists the team in building relationships with the identified project stakeholders. Common methods include:

  • Power/interest grid, power/influence grid, or impact/influence grid. Each of these techniques supports a grouping of stakeholders according to their level of authority (power), level of concern about the project’s
    outcomes (interest), ability to influence the outcomes of the project (influence), or ability to cause changes to the project’s planning or execution. These classification models are useful for small projects or for projects with simple relationships between stakeholders and the project, or within the stakeholder community itself.

  • uu Stakeholder cube. This is a refinement of the grid models previously mentioned. This model combines the grid elements into a three-dimensional model that can be useful to project managers and teams in identifying
    and engaging their stakeholder community. It provides a model with multiple dimensions that improves the depiction of the stakeholder community as a multidimensional entity and assists with the development of communication strategies.

  • Salience model. Describes classes of stakeholders based on assessments of their power (level of authority or ability to influence the outcomes of the project), urgency (need for immediate attention, either time-constrained or relating to the stakeholders’ high stake in the outcome), and legitimacy (their involvement is appropriate). There is an adaptation of the salience model that substitutes proximity for legitimacy (applying to the team and measuring their level of involvement with the work of the project). The salience model is useful for large complex communities of stakeholders or where there are complex networks of relationships within the community. It is also useful in determining the relative importance of the identified stakeholders.

  • Directions of influence. Classifies stakeholders according to their influence on the work of the project or the project team itself. Stakeholders can be classified in the following ways:

    • Upward (senior management of the performing organization or customer organization, sponsor, and steering committee),
    • Downward (the team or specialists contributing knowledge or skills in a temporary capacity),
    • Outward (stakeholder groups and their representatives outside the project team, such as suppliers, government departments, the public, end-users, and regulators), or
    • Sideward (the peers of the project manager, such as other project managers or middle managers who are in competition for scarce project resources or who collaborate with the project manager in sharing resources or information).
  • Prioritization. Prioritizing stakeholders may be necessary for projects with a large number of stakeholders, where the membership of the stakeholder community is changing frequently, or when the relationships between
    stakeholders and the project team or within the stakeholder community are complex.

|36|流程图|8.1 8.2

8.1
流程图,也称过程图,用来显示在一个或多个输入转化成一个或多个输出的过程中,所需要的步骤顺序和可能分支。它通过映射水平价值链的过程细节来显示活动、决策点、分支循环、并行路径及整体处理顺序。图 8-6 展示了其中一个版本的价值链,即 SIPOC(供应商、输入、过程、输出和客户)模型。流程图可能有助于了解和估算一个过程的质量成本。通过工作流的逻辑分支及其相对频率来估算质量成本。这些逻辑分支细分为完成符合要求的输出而需要开展的一致性工作和非一致性工作。用于展示过程步骤时,流程图有时又被称为“过程流程图”或“过程流向图”,可帮助改进过程并识别可能出现质量缺陷或可以纳入质量检查的地方。
8.2
流程图展示了引发缺陷的一系列步骤。

8.1
Flowcharts are also referred to as process maps because they display the sequence of steps and the branching possibilities that exist for a process that transforms one or more inputs into one or more outputs. Flowcharts show the activities, decision points, branching loops, parallel paths, and the overall order of processing by mapping the operational details of procedures that exist within a horizontal value chain. One version of a value chain, known as a SIPOC (suppliers, inputs, process, outputs, and customers) model, is shown in Figure 8-6. Flowcharts may prove useful in understanding and estimating the cost of quality for a process. Information is obtained by using the workflow branching logic and associated relative frequencies to estimate the expected monetary value for the conformance and nonconformance work required to deliver the expected conforming output. When flowcharts are used to represent the steps in a process, they are sometimes called process flows or process flow diagrams and they can be used for process improvement as well as identifying where quality defects can occur or where to incorporate quality checks.
8.2
Flowcharts show a series of steps that lead to a defect.

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-02-26 11:31:25  更:2022-02-26 11:34:16 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 3:25:43-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码