IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【3D目标检测】PointPillars论文和代码解析 -> 正文阅读

[人工智能]【3D目标检测】PointPillars论文和代码解析

1.前言

本文要解析的模型叫做PointPillars,是2019年出自工业界的一篇Paper。

该模型最主要的特点是检测速度和精度的平衡。该模型的平均检测速度达到了62Hz,最快速度达到了105Hz,确实遥遥领先了其他的模型。这里我们引入CIA-SSD模型中的精度-速度图,具体对比如下所示
在这里插入图片描述
可以看出,截止CIA-SSD论文发表前,PointPillars的检测速度都是遥遥领先的,而且精度也不低。

现有的一些研究喜欢将不规则、稀疏的点云数据按照以下两种方式进行处理,然后引入RPN层进行3D Bbox Proposal,这两种方法为:

(1)将点云数据划纳入一个个体素(Voxel)中,构成规则的、密集分布的体素集。常见的有VoxelNet和SECOND,这在之前的文章中已经解析过了;

(2)从俯视角度将点云数据进行处理,获得一个个伪图片的数据。常见的模型有MV3D和AVOD,这也说过了。

本文采用了一种不同于上述两种思路的点云建模方法。从模型的名称PointPillars可以看出,该方法将Point转化成一个个的Pillar(柱体),从而构成了伪图片的数据。

然后对伪图片数据进行BBox Proposal就很简单了,作者采用了SSD的网络结构进行了Proposal。

本文的论文地址为:https://link.zhihu.com/?target=https%3A//arxiv.org/abs/1812.05784
代码地址为:https://link.zhihu.com/?target=https%3A//github.com/SmallMunich/nutonomy_pointpillars

2 数据处理和网络结构

前面说到本文的一大亮点是将点云划分为一个个的Pillar,从而构成了伪图片的数据。

如何构成这个伪图片呢?作者在论文中是给出了这样的图,如下。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.损失函数

在这里插入图片描述

4 总结

PointPillars是一款能够平衡检测速度和检测精度的3D检测模型。最近我也正在看这个模型的代码,上手玩玩这个模型,希望最后的结果能够惊艳到我(微笑)。如果文章解析部分有理解不到位的地方,欢迎各位批评指正!

写的很清楚,转载自:https://zhuanlan.zhihu.com/p/357626425?ivk_sa=1024320u

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-02-26 11:31:25  更:2022-02-26 11:35:54 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 18:39:08-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码