IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> TensorFlow(2)-数据载入 -> 正文阅读

[人工智能]TensorFlow(2)-数据载入

1. tf.data.Dataset

参考Google官方给出的Dataset API中的类图,Dataset 务于数据读取,构建输入数据的pipeline。在这里插入图片描述
Dataset可以看作是相同类型“元素”的有序列表,可使用Iterator迭代获取Dataset中的元素。

2. dataset 创建数据集的方式

2.1 tf.data.Dataset.from_tensor_slices()

从tensor中创建数据集,数据集元素以tensor第一维度为划分。

import tensorflow as tf
import numpy as np
# 切分传入Tensor的第一个维度,生成相应的dataset。
dataset1 = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0])) 
# 如果传入字典,那切分结果就是字典按值切分,元素型如{"a":[1],"b":[x,x]}
dataset2 = tf.data.Dataset.from_tensor_slices(
    {
        "a": np.array([1.0, 2.0, 3.0, 4.0, 5.0]),                                       
        "b": np.random.uniform(size=(5, 2))
    }
)

2.2 tf.data.TextLineDataset()

读取文件数据创建数据集,数据集元素为文件的每一行

2.3 tf.data.FixedLengthRecordDataset()

从一个文件列表和record_bytes中创建数据集,数据集元素是文件中固定字节数record_bytes的内容。文件列表用来做啥?

2.4 tf.data.TFRecordDataset()

读TFRecord文件创建数据集,数据集元素是一个TFExample。

3. dateset 迭代操作iterator

iterator是从Dataset对象中创建出来的,用于迭代取数据集中的元素。

3.1 make_one_shot_iterator()

dataset.make_one_shot_iterator()–只能从头到尾读取一次dataset。如果一个dataset中元素被读取完了再sess.run()的话,会抛出tf.errors.OutOfRangeError异常。因此可以在外界捕捉这个异常以判断数据是否读取完。

import tensorflow as tf
import numpy as np
# 切分传入Tensor的第一个维度,生成相应的dataset。如果传入字典,那切分结果就是字典按值切分
dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0])) 
iterator = dataset.make_one_shot_iterator()    # 只能从头到尾读取一次
one_element = iterator.get_next()              # 从iterator里取出一个元素。
# 处于非Eager模式,所以one_element只是一个Tensor,并不是一个实际的值。调用sess.run(one_element)后,才能真正地取出一个值。
with tf.Session() as sess:
    try:
        while True:
            print(sess.run(one_element))

    except tf.errors.OutOfRangeError:
        print("end!")   

3.2 make_initializable_iterator()

dataset.make_initializable_iterator()–支持placeholder dataset 的迭代操作,这可以方便通过参数快速定义新的Iterator。

 # limit相当于一个参数,它规定了Dataset中数的上限, 使用make_initializable_iterator
limit = tf.placeholder(dtype=tf.int32, shape=[])
dataset = tf.data.Dataset.from_tensor_slices(tf.range(start=0, limit=limit))
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()  
with tf.Session() as sess:
    sess.run(iterator.initializer, feed_dict={limit: 10})
    for i in range(10):
      value = sess.run(next_element)
      assert i == value

如果在dataset的构建时,一次性读入了所有的数据,会导致计算图变得很大,给传输、保存带来不便。make_initializable_iterator()支持placeholder 操作,仅在需要传输数据时再取数据。

# 从硬盘中读入两个Numpy数组
with np.load("/var/data/training_data.npy") as data:
  features = data["features"]
  labels = data["labels"]

features_placeholder = tf.placeholder(features.dtype, features.shape)
labels_placeholder = tf.placeholder(labels.dtype, labels.shape)

dataset = tf.data.Dataset.from_tensor_slices((features_placeholder, labels_placeholder))
iterator = dataset.make_initializable_iterator()
sess.run(iterator.initializer, feed_dict={features_placeholder: features,
                                          labels_placeholder: labels})

3.3 reinitializable iterator()

dataset.reinitializable iterator() --待补

3.4 feedable iterator()

dataset.feedable iterator()–待补

4. dataset的map、batch、shuffle、repeat操作

map–接收一个函数,Dataset中的每个元素都会被当作这个函数的输入,并将函数返回值作为新的Dataset。

dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))
dataset = dataset.map(lambda x: x + 1) # 2.0, 3.0, 4.0, 5.0, 6.0

batch–将多个元素组合成一个batch

dataset = dataset.batch(16)    # 将数据集划分为batch size为16的小批次

shuffle– 打乱dataset中的元素,参数buffersize。打乱的实现机理:从buffer_size 大小的部buffer中随机抽取元素,组成打乱后的数据集。buffer中被抽走的元素由原数据集中的后续元素补位置。 重复‘抽取-补充’这个过程,直至buffer为空。

buffer_size 的大小详见tf.data.Dataset.shuffle(buffer_size)中buffer_size的理解

dataset = dataset.shuffle(buffer_size=10000)

repeat– 将整个序列重复多次,用来处理机器学习中的epoch,假设原始数据是一个epoch,使用repeat(5)就可以将之变成5个epoch

dataset = dataset.repeat(5)

5. 非eager/eager 模式

5.1 非eager模式demo

在非Eager模式下,Dataset中读出的一个元素一般对应一个batch的Tensor,我们可以使用这个Tensor在计算图中构建模型。

import tensorflow as tf
import numpy as np
# 切分传入Tensor的第一个维度,生成相应的dataset。如果传入字典,那切分结果就是字典按值切分
dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0])) 
iterator = dataset.make_one_shot_iterator()    # 只能从头到尾读取一次
one_element = iterator.get_next()              # 从iterator里取出一个元素。
# 处于非Eager模式,所以one_element只是一个Tensor,并不是一个实际的值。调用sess.run(one_element)后,才能真正地取出一个值。
with tf.Session() as sess:
    try:
        while True:
            print(sess.run(one_element))

    except tf.errors.OutOfRangeError:
        print("end!")   

5.2 eager模式demo

在Eager模式下,Dataset建立Iterator的方式有所不同,此时通过读出的数据就是含有值的Tensor,方便调试。

import tensorflow.contrib.eager as tfe
tfe.enable_eager_execution()
dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))
for one_element in tfe.Iterator(dataset):
    print(one_element)             # 可直接读取数据

参考文献:TensorFlow全新的数据读取方式:Dataset API入门教程

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-02-28 15:28:52  更:2022-02-28 15:29:59 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 3:03:31-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码