全部代码在最后面。 分类任务: 用名字识别出语言; ![在这里插入图片描述](https://img-blog.csdnimg.cn/7f769bad7a7b480f9a4480c766ac35b9.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16) 这里每一个名字实际上是一个序列,(序列长短不一致) 例如Maclean,-> M a c l e a n == x1,x2,x3,x4,x5,x6,x7
①准备数据 ![在这里插入图片描述](https://img-blog.csdnimg.cn/5828fe8e25ca4a78a681ca5672835ed2.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16) 用ASCII码来表示; 序列长短不一: 用padding ![在这里插入图片描述](https://img-blog.csdnimg.cn/9f2f417205414e6390dd357a27c93945.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16) 对标签Y也做成词典:将来就可以再这个词典里查找 ![在这里插入图片描述](https://img-blog.csdnimg.cn/70195576e3fa4de08d6bb8b03e620f89.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16)
对数据(.gz类型)的读取: 不同数据类型用不同包去读取! ![在这里插入图片描述](https://img-blog.csdnimg.cn/9ecfb4993a3a4885ab6eb944a7575566.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16)
![在这里插入图片描述](https://img-blog.csdnimg.cn/1722dfc9f72b4aec9b5ebf8fe552a402.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16)
制作键值对表: ![在这里插入图片描述](https://img-blog.csdnimg.cn/29ba96c213e34c3f9a7123556f445be3.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16) code:
def getConutryDict(self):
country_dict = dict()
for idx, country_name in enumerate(self.country_list, 0):
country_dict[country_name] = idx
return country_dict
根据键值对的索引返回国家的字符串: ![在这里插入图片描述](https://img-blog.csdnimg.cn/e39dc01f6ba34413be2bd2818537e359.png) code:
def idx2country(self, index):
return self.country_list[index]
embedding层的输入输出维度:![在这里插入图片描述](https://img-blog.csdnimg.cn/76e782f97d064195b0fdc2f60d3c3cea.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16) embedding图示: ![在这里插入图片描述](https://img-blog.csdnimg.cn/9b33ba5b940e4c54ad5a33d3013b6888.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16) GRU的输入输出维度: ![在这里插入图片描述](https://img-blog.csdnimg.cn/8a65a0b35f7b42a685ce8f2402ea193a.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16) 初始化的隐层维度: ![在这里插入图片描述](https://img-blog.csdnimg.cn/97fe87c71d664bd4a4c8b718fcc303cc.png)
Bi-direction RNN/LSTM/GRU(双向的): 疑问:h0b从哪里得来的?或许也是初始化好全0的,如下图代码所示: ![在这里插入图片描述](https://img-blog.csdnimg.cn/0032aacc50fd45d6a912a226ed65370a.png)
![在这里插入图片描述](https://img-blog.csdnimg.cn/47b71fd21eaa4e35a611674efde6f777.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16) 将来的输出: ![在这里插入图片描述](https://img-blog.csdnimg.cn/498c930ae60740a2af3f25b8c9ad4172.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16) hidden将来状态: ![在这里插入图片描述](https://img-blog.csdnimg.cn/8f62da56932046cd8f42e19891cd98bb.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16) input维度变换: ![在这里插入图片描述](https://img-blog.csdnimg.cn/127333d1ec8948bba90a0b22cc6ae61a.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16) PackedSequence 得先排序!(“去掉”0的padding层) 作用:方便gru的计算 图示: ![在这里插入图片描述](https://img-blog.csdnimg.cn/68f02cb74d50434fafb6c2e4bd36c457.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16)
把name转换成张量: ![在这里插入图片描述](https://img-blog.csdnimg.cn/83b42dfb5ec54ac8b6348e0a54a6ab44.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16) ①:先把人名拆开,再利用ASCII码对标;![](https://img-blog.csdnimg.cn/9c7e6c82dda94a26bab9873ca47dd314.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16) ②填充,padding,弥补长短不一问题; ![在这里插入图片描述](https://img-blog.csdnimg.cn/5934d8a001c94e39aeee213f7cfeb273.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16) padding 实现代码: 实际上是先做一个全0的张量,然后依次把每个样本的指贴过去 ![在这里插入图片描述](https://img-blog.csdnimg.cn/eb21a2e3510940f19f7957db89a5eac1.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16) code:
# Padding make tensor of name, BatchSize x SeqLen
# 先做一个全0的张量
seq_tensor = torch.zeros(len(name_sequences), seq_lengths.max()).long()
# 这是一个复制操作,
for idx, (seq, seq_len) in enumerate(zip(name_sequences, seq_lengths), 0):
seq_tensor[idx, :seq_len] = torch.LongTensor(seq)
③转置,以便于满足embedding层的输入维度; ![在这里插入图片描述](https://img-blog.csdnimg.cn/babf06f675684d919426773b5c706e4a.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16) ④把这些排序; ![在这里插入图片描述](https://img-blog.csdnimg.cn/e5d0f52f37b44a42bf063501c5804a65.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_20,color_FFFFFF,t_70,g_se,x_16) 按序列长度排序: code:
# sort by length to use
# 排完序后得到 seq_lengths(排序后的序列) perm_idx(排序后对应的ID,即索引)pack_padded_seqence
seq_lengths, perm_idx = seq_lengths.sort(dim=0, descending=True)
seq_tensor = seq_tensor[perm_idx]
countries = countries[perm_idx]
总的code:
import gzip
import csv
import math
import torch
import time
from torchvision import datasets
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.nn.utils.rnn import pack_padded_sequence
HIDDEN_SIZE = 100
BATCH_SIZE = 256
N_LAYER = 2
N_EPOCHS = 100
N_CHARS = 128
USE_GPU = False
class NameDataset(Dataset):
# 选择从训练集中读取/测试集中读取
def __init__(self, is_train_set=True):
filename = 'data/names_train.csv.gz' if is_train_set else 'data/names_test.csv.gz'
with gzip.open(filename, 'rt') as f:
reader = csv.reader(f)
# 读取所有行 类型(name, language)
rows = list(reader)
# 把每一行的第0个元素放一起,即 name (row[0])集合在一个列表
self.names = [row[0] for row in rows]
self.len = len(self.names)
# countries 同理 countries对应将来的标签
self.countries = [row[1] for row in rows]
# set(): 把列表变为集合,即去除重复元素,每个语言就只剩下一个实例,再sorted排序
self.country_list = list(sorted(set(self.countries)))
# 把这个列表转变为一个词典
self.country_dict = self.getCountryDict()
self.country_num = len(self.country_list)
# 提供索引访问,返回两项
def __getitem__(self, index):
return self.names[index], self.country_dict[self.countries[index]]
def __len__(self):
return self.len
def getCountryDict(self):
country_dict = dict()
for idx, country_name in enumerate(self.country_list, 0):
country_dict[country_name] = idx
return country_dict
# 根据键值对的索引返回国家的字符串
def idx2country(self, index):
return self.country_list[index]
# 想知道一共有几个国家
def getCountriesNum(self):
return self.country_num
trainset = NameDataset(is_train_set=True)
trainloader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
testset = NameDataset(is_train_set=False)
testloader = DataLoader(testset, batch_size=BATCH_SIZE, shuffle=False)
# N_COUNTRY 决定将来模型的输出维度
N_COUNTRY = trainset.getCountriesNum()
def create_tensor(tensor):
if USE_GPU:
device = torch.device("cuda:0")
tensor = tensor.to(device)
return tensor
class RNNClassifier(torch.nn.Module):
def __init__(self, input_size, hidden_size, output_size, n_layers=1, bidirectional=True):
super(RNNClassifier, self).__init__()
# hidden_size 和n_layers要用在GRU的处理上
self.hidden_size = hidden_size
self.n_layers = n_layers
self.n_directions = 2 if bidirectional else 1
self.embedding = torch.nn.Embedding(input_size, hidden_size)
self.gru = torch.nn.GRU(hidden_size, hidden_size, n_layers,
bidirectional=bidirectional)
# 若是n_directions = 2,hidden是俩个,所以线形层要把这俩个拼在一起,故hidden_size也要乘n_directions。
self.fc = torch.nn.Linear(hidden_size * self.n_directions, output_size)
def _init_hidden(self, batch_size):
hidden = torch.zeros(self.n_layers * self.n_directions,
batch_size, self.hidden_size)
return create_tensor(hidden)
def forward(self, input, seq_lengths):
# input shape:B X S -> S X B 矩阵转置,因为embedding层 需要的输入维度为:seqLen * batch_size
input = input.t()
# 同时算出batch_size
batch_size = input.size(1)
# 利用构造的函数和求导的batch_size得到初始化的隐层h
hidden = self._init_hidden(batch_size)
embedding = self.embedding(input)
# pack them up
gru_input = pack_padded_sequence(embedding, seq_lengths)
output, hidden = self.gru(gru_input, hidden)
if self.n_directions == 2:
hidden_cat = torch.cat([hidden[-1], hidden[-2]], dim=1)
else:
hidden_cat = hidden[-1]
fc_output = self.fc(hidden_cat)
return fc_output
# name2list是一个元组
def name2list(name):
# 把名字变为列表,列表生成式↓👇,把每一个名字变成一个ASCII码列表
arr = [ord(c) for c in name]
# 返回一个列表本身和列表的长度
return arr, len(arr)
def make_tensors(names, countries):
sequences_and_lengths = [name2list(name) for name in names]
# 取出列表的名字和列表长度
name_sequences = [sl[0] for sl in sequences_and_lengths]
seq_lengths = torch.LongTensor([sl[1] for sl in sequences_and_lengths])
countries = countries.long()
# Padding make tensor of name, BatchSize x SeqLen
# 先做一个全0的张量
seq_tensor = torch.zeros(len(name_sequences), seq_lengths.max()).long()
# 这是一个复制操作,
for idx, (seq, seq_len) in enumerate(zip(name_sequences, seq_lengths), 0):
seq_tensor[idx, :seq_len] = torch.LongTensor(seq)
# sort by length to use pack_padded_seqence
# 排完序后得到 seq_lengths(排序后的序列) perm_idx(排序后对应的ID,即索引)
seq_lengths, perm_idx = seq_lengths.sort(dim=0, descending=True)
seq_tensor = seq_tensor[perm_idx]
countries = countries[perm_idx]
return create_tensor(seq_tensor), create_tensor(seq_lengths), create_tensor(countries)
def trainModel():
total_loss = 0
for i, (names, countries) in enumerate(trainloader, 1):
inputs, seq_lengths, target = make_tensors(names, countries)
output = classifier(inputs, seq_lengths)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
if i % 10 == 0:
print(f'[{time_since(start)}] Epoch {epoch} ', end='')
print(f'[{i * len(inputs)}/{len(trainset)}] ', end='')
print(f'loss={total_loss / (i * len(inputs))}')
return total_loss
def testModel():
correct = 0
total = len(testset)
print("evaluating train model ...")
with torch.no_grad():
for i, (names, countries) in enumerate(testloader, 1):
inputs, seq_lengths, target = make_tensors(names, countries)
output = classifier(inputs, seq_lengths)
pred = output.max(dim=1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
percent = '%.2f' % (100 * correct / total)
print(f'Test set: Accuracy {correct}/{total} {percent}%')
return correct / total
def time_since(since):
# 当前的时间-开始的时间
s = time.time() - since
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
if __name__ == '__main__':
classifier = RNNClassifier(N_CHARS, HIDDEN_SIZE, N_COUNTRY, N_LAYER)
if USE_GPU:
device = torch.device("cude:0")
classifier.to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(classifier.parameters(), lr=0.001)
# 求一下训练时间有多长
start = time.time()
print("Training for %d eopchs..." % N_EPOCHS)
acc_list = []
for epoch in range(1, N_EPOCHS + 1):
trainModel()
acc = testModel()
acc_list.append(acc)
效果图(cpu): ![在这里插入图片描述](https://img-blog.csdnimg.cn/7ea8018b17cc44a590a38ce1713af1bc.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_17,color_FFFFFF,t_70,g_se,x_16) 效果图(GPU): tips,用GPU时需要在此处更改:在seq_lengths加一个.cpu()
# pack them up
gru_input = pack_padded_sequence(embedding, seq_lengths.cpu())
![在这里插入图片描述](https://img-blog.csdnimg.cn/364bbbe0a5624b8c8dba22e0662323d4.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAWEQwRFg=,size_16,color_FFFFFF,t_70,g_se,x_16)
|