IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> [动手学深度学习] 03 多层感知机 -> 正文阅读

[人工智能][动手学深度学习] 03 多层感知机

1.多层感知机

多层感知机(multilayer perceptron)通常被称作MLP,也叫做深度前馈网络。
多层感知机中的多层体现在,在之前的先行神经网络中添加了一个隐藏层。
如下图所示:
在这里插入图片描述
这是一个两层的神经网络。其中的层数指的是神经元之间的权重参数。
多层感知机与线性神经网络非常类似:
假设有n个样本,样本有d维特征,则输入的神经元X为nxd的矩阵。
隐藏层权重W1为dxh的矩阵。这里的h指的是隐藏层神经元的个数。
则隐藏层输出为nxh的矩阵。同时要加上一个隐藏层的偏置b,1xh的向量。
再经过hxq的输出层权重W2,已经输出层偏置b,1xq的向量。这里的q是指的输出层神经元的个数。
H = X W ( 1 ) + b ( 1 ) H=XW^{(1)}+b^{(1)} H=XW(1)+b(1)
O = H W ( 2 ) + + b ( 2 ) O=HW^{(2)+}+b^{(2)} O=HW(2)++b(2)
实际上,多层感知机是一个非线性模型。以上的表示形式并不是非线性的形式,两个权重向量合到一起,仍然是线性模型。多层感知机的非线性就体现在隐藏层的非线性激活函数。所以应该写为:
H = σ ( X W ( 1 ) + b ( 1 ) ) H=\sigma(XW^{(1)}+b^{(1)}) H=σ(XW(1)+b(1))
这样多层感知机就具有了更强的表达能力。

1.1 激活函数

非线性激活函数有很多种,常见的有:relu激活函数,sigmoid激活函数,tanh激活函数等等…
R e l u ( x ) = m a x ( 0 , x ) Relu(x)=max(0,x) Relu(x)=max(0,x)
Relu激活函数有效地解决了反向传播中的梯度爆炸问题。Relu函数在0处不可微,但是它的表现效果仍然很好,部分原因是:神经网络训练算法通常不会达到代价函数的最小值,而是仅仅显著地减小它的值。
还有pRelu函数:
p R e l u ( x ) = m a x ( 0 , x ) + α m i n ( 0 , x ) pRelu(x)=max(0,x)+\alpha min(0,x) pRelu(x)=max(0,x)+αmin(0,x)

1.2 多层感知机的实现

import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
def load_data_fashion_mnist(batch_size,resize=None):
    trans = transforms.ToTensor()
    mnist_train = torchvision.datasets.FashionMNIST(root="../data",train=True,transform=
                                               trans,download=True)
    mnist_test = torchvision.datasets.FashionMNIST(root="../data",train=False,transform=trans,
                                              download=True)
    if resize:
        trans.insert(0,transforms.Resize(resize))
    trans = transforms.Compose(trans)
    return (data.DataLoader(mnist_train,batch_size,shuffle=True,
                            num_workers=get_dataloader_workers()),
           data.DataLoader(mnist_test,batch_size,shuffle=False,
                           num_workers=get_dataloader_workers))

num_inputs,num_outputs,num_hiddens = 784,10,256

W1 = nn.Parameter(torch.randn(num_inputs,num_hiddens,requires_grad=True)*0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens,requires_grad=True))
W2 = nn.Parameter(torch.randn(num_hiddens,num_outputs,requires_grad=True)*0.01)
b2 = nn.Parameter(torch.zeros(num_outputs,requires_grad=True))

parmas = [W1,b1,W2,b2]
          
def relu(x):
    a = torch.zeros_like(x)
    return torch.max(x,a)   

def net(X):
    X=X.reshape((-1,num_inputs))
    H = relu(X@W1+b1)
    return (H@W2+b2)

loss = nn.CrossEntropyLoss()
          
num_epochs,lr =10,0.1
updater = torch.optim.SGD(parmas,lr=lr)
d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,updater)

2. 正则化

当模型在训练数据集上表现得很好,但是在测试数据集上却表现得泛化能力很差,就是出现了过拟合。通常,可以降低模型复杂度、或者增强数据集、正则化等方式来解决过拟合问题。正则化类似于优化问题,在深度学习中占有很高的地位。
对于之前的线性模型、和多层感知机等,我们可以通过限制参数值得选择范围来控制模型容量。类似于优化问题:
m i n ? l ( w , b ) ?? s . t . ? ∣ ∣ w ∣ ∣ 2 ≤ θ min\ l(w,b) \ \ s.t.\ ||w||^2\leq\theta min?l(w,b)??s.t.?w2θ

2.1 范数

p范数: ∣ ∣ x ∣ ∣ p = ∑ i ∣ x i ∣ p p ||x||_p = \sqrt[p]{\sum_i|x_i|^p} xp?=pi?xi?p ?
0范数: 表示向量中非0元素得个数。
1范数: 表示向量中所有元素的绝对值之和
2范数:表示向量元素的平方和开根号

2. 2 1范数与2范数正则化

为了解决过拟合问题,通常在损失函数中加入1范数或2范数。
2范数正则化:
m i n ? l ( w , b ) + λ 2 ∣ ∣ w ∣ ∣ 2 min\ l(w,b)+\frac{\lambda}{2}||w||^2 min?l(w,b)+2λ?w2
Q:如何理解正则化能够解决过拟合问题?
A: 通俗地直观地理解就是:模型在训练时,训练数据太少,模型记住了所有的数据,来了一个不认识的数据时,模型就不知道怎么分类了。而正则化就是在损失函数后面加一项,来增大训练误差来减少测试误差的一种策略。换句话说:我们只想要模型记住数据集中有用的特征,而不是所有的特征。
以上面的2范数正则化为例:我们想要通过w的大小来降低模型的复杂度,这时就在后面加入一个正则项,正则项是关于w的函数,以及超参数 λ \lambda λ的函数。这时,在梯度下降时,就需要权衡前一项和后一项,来达到一个平衡,这样就控制了w不会变得特别大。可以看一张经典的图:
请添加图片描述

同时, λ \lambda λ超参数控制了正则项的重要程度。如果 λ = 0 \lambda=0 λ=0,显然正则项就没有用,如果 λ ? > ∞ \lambda->\infty λ?>,则w的值就会趋于0.
Q: 那为什么l1范数和l2范数能达到这样的效果呢?
A: 1范数,又被称为lasson regression。l1范数的作用是能求得稀疏的解。直观感受就是,上图中的同心圆换成一个正方形,只有边上很少的点是稀疏的。解是稀疏的,就意味着有不少的系数是为0,这样就达到了筛选特征的效果,降低了模型的复杂度。
l2 范数在线性模型中又称为rigde regression ,岭回归。这里引用一句:L2范数惩罚项的加入使得 X T X + λ I X^TX+\lambda I XTX+λI满秩,保证了可逆,但是也由于惩罚项的加入,使得回归系数β的估计不再是无偏估计。所以岭回归是以放弃无偏性、降低精度为代价解决病态矩阵问题的回归方法。
单位矩阵I的对角线上全是1,像一条山岭一样,这也是岭回归名称的由来。
在加入l2范数正则化项后,梯度跟新就会变为:
W t + 1 = ( 1 ? η λ ) W t ? η ? l ( W t , b t ) ? W t W_{t+1}=(1-\eta\lambda)W_t-\eta\frac{\partial l(W_t,b_t)}{\partial W_t} Wt+1?=(1?ηλ)Wt??η?Wt??l(Wt?,bt?)?
可以发现,与没有加入正则项的梯度下降损失函数相比,不同的就是Wt前面的系数,小于1了。这就是权重衰退。
所以l2范数通过权重衰退,抑制了模型中产生过拟合的参数,来防止了过拟合。

3. Dropout

Dropout是一种防止过拟合的方法。其原理是:一个好的模型需要对输入数据的扰动鲁棒,所以dropout就是在神经网络层中加入噪音。使用有噪音的数据等价于Tikhonov正则。所以Dropout本质还是一种正则化处理。
如何加入噪音呢呢?通常是以unbiased的方式加入噪音,是的加入之后的期望和之前的一样。一种做法是: 直接在输入后面加入正态分布的噪声。另一种更为广泛的做法是:在神经网络的某一层中加入Dropout层,也就是以概率p来舍去这一层的某些结点,剩下的结点就扩大1-p倍,这样总体的期望还是不变的。
h ′ = { h 1 ? p ? o t h e r w i s e 0 ? 概 率 p h^{'}=\{^{0 \ 概率p}_{\frac{h}{1-p} \ otherwise} h={1?ph??otherwise0?p?

3.1 简单实现

import torch
from torch import nn
from d2l import torch as d2l
num_inputs,num_outputs,num_hiddens,num_hiddens2=784,10,256,256
dropout1,dropout2=0.2,0.5
net = nn.Sequential(
    nn.Flatten(),
    nn.Linear(784,256),
    nn.ReLU(),
    nn.Dropout(dropout1),
    nn.Linear(256,256),
    nn.ReLU(),
    nn.Dropout(dropout2),
    nn.Linear(256,10)
)

def init_weights(m):
    if type(m)==nn.Linear:
        nn.init.normal_(m.weight,std=0.01)
        
net.apply(init_weights)

trainer = torch.optim.SGD(net.parameters(),lr=lr)

d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,trainer)

Reference

https://zh-v2.d2l.ai/
深度学习 Ian Goodfellow等 2017 人民邮电出版社

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-04 15:33:38  更:2022-03-04 15:35:07 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 1:38:03-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码