IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 二十一、文本情感分类二 -> 正文阅读

[人工智能]二十一、文本情感分类二

1.1 文本训练化概述

  • 深度学习构建模型前需要将文本转化为向量表示(Word Embedding)。首先需要将文本转化为数字(文本序列化),在把数字转化为向量。
  • 可以考虑把文本中的每个词语和其对应的数字,使用字典保存,同时把句子转化为数字的列表。

在这里插入图片描述

1.2 文本序列化的过程

  • 实现文本序列化之前,应考虑一下几点:

    1. 如何使用字典把词语和数字进行对应;

    2. 不同的词语出现的次数不尽相同,是否需要对高频或者低频词语进行过滤

    3. 得到词典之后,如何把句子转化为数字序列,如何把数字序列转化为句子

    4. 不同句子长度不相同,每个batch的句子如何构造成相同的长度

    5. 对于新出现的词语在词典中没有出现怎么办(特殊字符代理)

2. 文本情感分类的模型构建

2.1 文本情感分类具体流程

  1. 数据预处理:读取文本数据,并按照批量的方式加载数据,使用DataLoader完成数据的读取,具体实现参考data_prepare.py
  2. 文本序列化:将文本数据转化向量表示(Word Embedding),具体实现参考save_ws.py
  3. 模型的构建和评估:由model.py实现

2. 2 代码

  • 步骤一:准备数据data_prepare.py
# coding:utf-8

import torch
from torch.utils.data import DataLoader, Dataset
import os
import re
import pickle

data_base_path = r"data\aclImdb"
ws = pickle.load(open("ws.pkl", "rb"))
max_len = 20


# 1. 定义tokenize的方法
def tokenize(text):
    fileters = ['!', '"', '#', '$', '%', '&', '\(', '\)', '\*', '\+', ',', '-', '\.', '/', ':', ';', '<', '=', '>',
                '\?', '@'
        , '\[', '\\', '\]', '^', '_', '`', '\{', '\|', '\}', '~', '\t', '\n', '\x97', '\x96', '”', '“', ]
    text = re.sub("<.*?>", " ", text, flags=re.S)
    text = re.sub("|".join(fileters), " ", text, flags=re.S)
    return [i.strip() for i in text.split()]


# 2. 准备dataset
class ImdbDataset(Dataset):
    def __init__(self, mode):
        # 调用父类初始化方法初始化继承的属性
        super(ImdbDataset, self).__init__()
        if mode == "train":
            text_path = [os.path.join(data_base_path, i) for i in ["train/neg", "train/pos"]]
        else:
            text_path = [os.path.join(data_base_path, i) for i in ["test/neg", "test/pos"]]

        self.total_file_path_list = []
        for i in text_path:
            self.total_file_path_list.extend([os.path.join(i, j) for j in os.listdir(i)])

    def __getitem__(self, idx):
        cur_path = self.total_file_path_list[idx]

        cur_filename = os.path.basename(cur_path)
        label = int(cur_filename.split("_")[-1].split(".")[0]) - 1  # 处理标题,获取label,转化为从[0-9]
        text = tokenize(open(cur_path, encoding="utf-8").read().strip())  # 直接按照空格进行分词
        return label, text

    def __len__(self):
        return len(self.total_file_path_list)


def collate_fn(batch):
    # batch是list,其中是一个一个元组,每个元组是dataset中__getitem__的结果
    label, content, = list(zip(*batch))
    content = [ws.transform(i, max_len=max_len) for i in content]
    content = torch.LongTensor(content)
    label = torch.LongTensor(label)
    return label, content


def get_dataloader(train_data=True):
    mode = ""
    if train_data:
        mode = "train"
    imdb_dataset = ImdbDataset(mode)
    dataloader = DataLoader(dataset=imdb_dataset, batch_size=10, shuffle=True, collate_fn=collate_fn)
    return dataloader


if __name__ == '__main__':
    # 1. 定义tokenize
    text = "I cannot stay indifferent<br></br> to Lars| van Trier's films. "
    s = tokenize(text)

    # 2. 实例化,准备dataloader
    dataset = ImdbDataset(mode="train")

    dataloader = get_dataloader()
    # 3. 观察数据输出结果
    for idx, (label, text) in enumerate(dataloader):
        print("idx:", idx)
        print("table:", label)
        print("text:", text)
        break

  • 步骤二:文本序列化save_ws.py
# 2. 准备dataset
class ImdbDataset(Dataset):
    def __init__(self, mode):
        # 调用父类初始化方法初始化继承的属性
        super(ImdbDataset, self).__init__()
        if mode == "train":
            text_path = [os.path.join(data_base_path, i) for i in ["train/neg", "train/pos"]]
        else:
            text_path = [os.path.join(data_base_path, i) for i in ["test/neg", "test/pos"]]

        self.total_file_path_list = []
        for i in text_path:
            self.total_file_path_list.extend([os.path.join(i, j) for j in os.listdir(i)])

    def __getitem__(self, idx):
        cur_path = self.total_file_path_list[idx]

        cur_filename = os.path.basename(cur_path)
        label = int(cur_filename.split("_")[-1].split(".")[0]) - 1  # 处理标题,获取label,转化为从[0-9]
        text = tokenize(open(cur_path).read().strip())  # 直接按照空格进行分词
        return label, text

    def __len__(self):
        return len(self.total_file_path_list)
  • 步骤三:模型评估和预测model.py
# coding:utf-8

import pickle
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam
from unit21.data_prepare import get_dataloader, max_len

ws = pickle.load(open("ws.pkl", "rb"))


class IMDBModel(nn.Module):
    def __init__(self,max_len):
        super(IMDBModel,self).__init__()
        self.embedding = nn.Embedding(len(ws),300,padding_idx=ws.PAD) #[N,300]
        self.fc = nn.Linear(max_len*300,10)  #[max_len*300,10]

    def forward(self, x):
        embed = self.embedding(x) #[batch_size,max_len,300]
        embed = embed.view(x.size(0),-1)
        out = self.fc(embed)
        return F.log_softmax(out,dim=-1)


model = IMDBModel(max_len)
optimizer = Adam(model.parameters(), 0.001)


# 训练
def train(epoch):
    train_dataloader = get_dataloader()
    for idx, (target, input) in enumerate(train_dataloader):
        optimizer.zero_grad()
        output = model(input)
        loss = F.nll_loss(output, target)  # traget需要是[0,9],不能是[1-10]
        loss.backward()
        optimizer.step()
        if idx % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, idx * len(input), len(train_dataloader.dataset),
                       100. * idx / len(train_dataloader), loss.item()))
            torch.save(model.state_dict(), "imdb_net.pkl")


def test():
    test_loss = 0
    correct = 0
    train = False

    model.load_state_dict(torch.load("imdb_net.pkl"))

    model.eval()
    test_dataloader = get_dataloader()
    with torch.no_grad():
        for target, input in test_dataloader:
            output = model(input)
            test_loss += F.nll_loss(output, target, reduction="sum")
            pred = torch.max(output, dim=-1, keepdim=False)[-1]
            correct = pred.eq(target.data).sum()
        test_loss = test_loss / len(test_dataloader.dataset)
        print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
            test_loss, correct, len(test_dataloader.dataset),
            100. * correct / len(test_dataloader.dataset)))


if __name__ == '__main__':
    epoch = 1
    train(epoch)
    #test()


  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-04 15:33:38  更:2022-03-04 15:36:11 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 1:54:11-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码