一、LeNet
- 卷积神经网络的开山鼻祖。
- 网络结构如下:
- 7层网络:2层卷积层,2层池化层交替出现。最后是三层全连接层。
- Pytorch实现
import torch
from torch import nn
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1,6,kernel_size=3,padding=1),
nn.MaxPool2d(2,2)
)
self.layer2 = nn.Sequential(
nn.Conv2d(6,16,kernel_size=3, padding=1),
nn.MaxPool2d(2, 2)
)
self.layer3 = nn.Sequential(
nn.Linear(16*5*5,120),
nn.Linear(120,84),
nn.Linear(84,10)
)
def forward(self,x):
x = self.layer1(x)
x = self.layer2(x)
x = x.view(x.size(0),-1)
x = self.layer3(x)
return x
if __name__ == '__main__':
LeNet_model = LeNet()
二、AlexNet
- AlexNet相对于LeNet第一次引入了Relu激活函数,并在全连接层引入了Dropout,从而防止过拟合。
- 网络结构
- 代码实现
from torch import nn
class AlexNet(nn.Module):
def __init__(self,num_classes):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3,64,kernel_size=11,stride=4,padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3,stride=2),
nn.Conv2d(64,192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192,384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3,stride=2)
)
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256*6*6,4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096,4096),
nn.ReLU(inplace=True),
nn.Linear(4096,num_classes)
)
def forward(self,x):
x = self.features(x)
x = x.view(x.size(0),-1)
x = self.classifier(x)
return x
if __name__ == '__main__':
AlexNet_module = AlexNet()
|