IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> PyTorch模型的保存与加载 -> 正文阅读

[人工智能]PyTorch模型的保存与加载

模型的保存与加载

首先,需要导入两个包

import torch
import torchvision.models as models

保存和加载模型参数

PyTorch模型将学习到的参数存储在一个内部状态字典中,叫做state_dict。这可以通过torch.save方法来实现。
我们导入预训练好的VGG16模型,并将其保存。我们将state_dict字典保存在model_weights.pth文件中。

model = models.vgg16(pretrained=True)
torch.save(model.state_dict(), 'model_weights.pth')

想要加载模型参数,我们需要创建一个和原模型一样的实例,然后通过load_state_dict()方法来加载模型参数

  • 创建一个VGG16模型实例(未经过预训练的)
  • 加载本地参数
model = models.vgg16() # we do not specify pretrained=True, i.e. do not load default weights
model.load_state_dict(torch.load('model_weights.pth'))
model.eval()
  • 注意:在进行测试前,如果模型中有dropout层和batch normalization层的话,一定要使用model.eval()将模型转到测试模式。

    • train模式下,dropout网络层会按照设定的参数p设置保留激活单元的概率(保留概率=p); batchnorm层会继续计算数据的meanvar等参数并更新。

    • val模式下,dropout层会让所有的激活单元都通过,而batchnorm层会停止计算和更新meanvar,直接使用在训练阶段已经学出的meanvar

  • 当然,相同的,在模型进行训练之前,要使用model.train()来将模型转为训练模式

保存和加载模型参数与结构

当加载模型权重时,我们需要首先实例化模型类,因为类定义了网络的结构。我们可能希望将这个类的结构与模型保存在一起。这样的话,我们可以将model而不是model.state_dict()作为参数。

torch.save(model, 'model.pth')

这样,我们加载模型的时候就不用再新建一个实例了。加载方式如下所示

model = torch.load('model.pth')
  • 这种方式在网络比较大的时候可能比较慢,因为相较于上面的方式多存储了网络的结构
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-08 22:28:32  更:2022-03-08 22:28:57 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 16:36:05-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码