IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> TensorFlow # 调试中间结果,打印神经网络中间层 -> 正文阅读

[人工智能]TensorFlow # 调试中间结果,打印神经网络中间层

TensorFlow直接print Tensor拿到的是结构不是真实值。

暂时没有想到好方法,如果读者有更好的方法也请留言给博主,共同学习,谢谢。

对于线性程序:

import tensorflow as tf
import tensorflow.contrib.layers as layers
import numpy as np
import os

os.environ["TF_CPP_MIN_LOG_LEVEL"]='3' # 去掉TF warnings
obs = np.array([-3.45687799e+01, -7.04237729e+02,  5.00000000e+02, -1.22464680e-13, 0.00000000e+00,  0.00000000e+00]) # 4N+2M
datain = tf.placeholder(tf.float32, shape=(1,6), name="in")
out1 = layers.fully_connected(datain, num_outputs=64, activation_fn=tf.nn.relu)
out2 = layers.fully_connected(out1, num_outputs=64, activation_fn=tf.nn.relu)
out3 = layers.fully_connected(out2, num_outputs=64, activation_fn=tf.nn.relu)
out4 = layers.fully_connected(out3, num_outputs=1, activation_fn=tf.nn.tanh)
 
with tf.Session() as sess:
    init_op = tf.global_variables_initializer()
    sess.run(init_op)
    prt0 = sess.run(datain, feed_dict={datain: [obs]})
    print("prt0:",prt0)
    prt1 = sess.run(out1, feed_dict={datain: [obs]})
    print("prt1:",prt1)
    prt2 = sess.run(out2, feed_dict={datain: [obs]})
    print("prt2:",prt2)
    prt3 = sess.run(out3, feed_dict={datain: [obs]})
    print("prt3:",prt3)
    prt4 = sess.run(out4, feed_dict={datain: [obs]})
    print("prt4:",prt4)

对于复杂程序,比如我们封装了业务代码,并不是像原本这样的线性结构:model作为函数变量又传进了一个函数…对update方法也有相关的封装处理,我们可以用类似上述的方法,新建一个config文件,用于跨文件共享变量

def model(input, num_outputs, scope, reuse=False, num_units=64):
    with tf.variable_scope(scope, reuse=reuse):
        out = input
        print(out)
        out = layers.fully_connected(out, num_outputs=num_units, activation_fn=tf.nn.relu)
        out = layers.fully_connected(out, num_outputs=num_units, activation_fn=tf.nn.relu)
        out = layers.fully_connected(out, num_outputs=num_outputs, activation_fn=tf.nn.relu)
        out = tf.nn.softmax(out)
        return out

在config.py中:

class Config:
    flag = False
    p_func = None # model
    p_input_ph = None # placeholder

flag 标记是否开始训练,后俩为某一tensorflow网络的输入和输出
通过在对应封装代码里:

        Config.p_input_ph = obs_ph
        Config.p_func = p

然后在主循环中:

if Config.p_func is not None:
	sess = U.get_session() 
    print("[debug]:p:",sess.run(Config.p_func,feed_dict={Config.p_input_ph: [obs]}))
def get_session():
    """Returns recently made Tensorflow session"""
    return tf.get_default_session()
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-08 22:28:33  更:2022-03-08 22:30:30 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 2:15:12-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码