IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> PyTorch加载数据集 -> 正文阅读

[人工智能]PyTorch加载数据集

一、实现过程

1、准备数据

PyTorch实现多维度特征输入的逻辑回归的方法不同的是:本文使用DataLoader方法,并继承DataSet抽象类,可实现对数据集进行mini_batch梯度下降优化。代码如下:

import torch
import numpy as np
from torch.utils.data import Dataset,DataLoader

class DiabetesDataSet(Dataset):
    def __init__(self, filepath):
        xy = np.loadtxt(filepath,delimiter=',',dtype=np.float32)
        self.len = xy.shape[0]
        self.x_data = torch.from_numpy(xy[:,:-1])
        self.y_data = torch.from_numpy(xy[:,[-1]])
        
    def __getitem__(self, index):
        return self.x_data[index],self.y_data[index]
    
    def __len__(self):
        return self.len

dataset = DiabetesDataSet('G:/datasets/diabetes/diabetes.csv')
train_loader = DataLoader(dataset=dataset,batch_size=32,shuffle=True,num_workers=0)

2、设计模型

class Model(torch.nn.Module):
    def __init__(self):
        super(Model,self).__init__()
        self.linear1 = torch.nn.Linear(8,6)
        self.linear2 = torch.nn.Linear(6,4)
        self.linear3 = torch.nn.Linear(4,1)
        self.activate = torch.nn.Sigmoid()
    
    def forward(self, x):
        x = self.activate(self.linear1(x))
        x = self.activate(self.linear2(x))
        x = self.activate(self.linear3(x))
        return x
model = Model()

3、构造损失函数和优化器

criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(),lr=0.1)

4、训练过程

每次拿出mini_batch个样本进行训练,代码如下:

epoch_list = []
loss_list = []
for epoch in range(100):
    count = 0
    loss1 = 0
    for i, data in enumerate(train_loader,0):
        # 1.Prepare data
        inputs, labels = data
        # 2.Forward
        y_pred = model(inputs)
        loss = criterion(y_pred,labels)
        print(epoch,i,loss.item())
        count += 1
        loss1 += loss.item()
        # 3.Backward
        optimizer.zero_grad()
        loss.backward()
        # 4.Update
        optimizer.step()
        
    epoch_list.append(epoch)
    loss_list.append(loss1/count)

5、结果展示

plt.plot(epoch_list,loss_list,'b')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.grid()
plt.show()

在这里插入图片描述

二、参考文献

[1] https://www.bilibili.com/video/BV1Y7411d7Ys?p=8

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-08 22:28:33  更:2022-03-08 22:31:53 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 16:46:18-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码