| 
 
 上一篇  
1.检测多个人脸 
import cv2 as cv
def face_detect_demo():
    gary = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
    face_detect = cv.CascadeClassifier('D:/Junior second/shixun/OPENCV(WIN)/opencv/sources/data/haarcascades/haarcascade_frontalface_default.xml')
    face = face_detect.detectMultiScale(gary)
    for x,y,w,h in face:
        cv.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2)
    cv.imshow('result',img)
img = cv.imread('face2.jpg')
face_detect_demo()
while True:
    if ord('q') == cv.waitKey(0):
        break
cv.destroyAllWindows()
  
效果:识别出图片中所有人脸     
2.视频检测 
import cv2 as cv
def face_detect_demo(img):
    gary = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
    face_detect = cv.CascadeClassifier('D:/Junior second/shixun/OPENCV(WIN)/opencv/sources/data/haarcascades/haarcascade_frontalface_default.xml')
    face = face_detect.detectMultiScale(gary)
    for x,y,w,h in face:
        cv.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2)
    cv.imshow('result',img)
cap = cv.VideoCapture('3.mp4')
while cap.isOpened():
    ret, frame = cap.read()
    
    cv.namedWindow("result", 0)  
    cv.resizeWindow("result", 800, 450)  
    cv.imshow('result', frame)
    face_detect_demo(frame)
    if cv.waitKey(1) & 0xFF == ord('q'):
        break
cv.destroyAllWindows()
cap.release()
  
效果:播放视频时可识别人脸        
3. 人脸录入&数据训练 
import os
import cv2
import sys
from PIL import Image
import numpy as np
def getImageAndLabels(path):
    facesSamples=[]
    ids=[]
    imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
    
    face_detector = cv2.CascadeClassifier('D:/Junior second/shixun/OPENCV(WIN)/opencv/sources/data/haarcascades/haarcascade_frontalface_alt2.xml')
    
    print('数据排列:',imagePaths)
    
    for imagePath in imagePaths:
        
        PIL_img=Image.open(imagePath).convert('L')
        
        
        
        img_numpy=np.array(PIL_img,'uint8')
        
        faces = face_detector.detectMultiScale(img_numpy)
        
        id = int(os.path.split(imagePath)[1].split('.')[0])
        
        for x,y,w,h in faces:
            ids.append(id)
            facesSamples.append(img_numpy[y:y+h,x:x+w])
        
        
        print('id:', id)
        
    print('fs:', facesSamples)
    
    
    return facesSamples,ids
if __name__ == '__main__':
    
    path='./data/jm/'
    
    faces,ids=getImageAndLabels(path)
    
    recognizer=cv2.face.LBPHFaceRecognizer_create()
    
    recognizer.train(faces,np.array(ids))
    
    recognizer.write('trainer/trainer.yml')
    
  
得到人脸灰度值(颜色越浅的地方值越小)     得到trainer.yml训练结果,用于后续识别人和id的对应关系。     
注意:卸载原来的opencv-python,安装opencv-contrib-python  
4.视频人脸识别 
import cv2
import numpy as np
import os
import urllib
import urllib.request
import hashlib
recogizer=cv2.face.LBPHFaceRecognizer_create()
recogizer.read('trainer/trainer.yml')
names=[]
warningtime = 0
def md5(str):
    import hashlib
    m = hashlib.md5()
    m.update(str.encode("utf8"))
    return m.hexdigest()
    data = urllib.parse.urlencode({'u': user, 'p': password, 'm': phone, 'c': content})
    send_url = smsapi + 'sms?' + data
    response = urllib.request.urlopen(send_url)
    the_page = response.read().decode('utf-8')
    print(statusStr[the_page])
def face_detect_demo(img):
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    face_detector=cv2.CascadeClassifier('D:/Junior second/shixun/OPENCV(WIN)//opencv/sources/data/haarcascades/haarcascade_frontalface_alt2.xml')
    face=face_detector.detectMultiScale(gray,1.1,5,cv2.CASCADE_SCALE_IMAGE,(100,100),(300,300))
    
    for x,y,w,h in face:
        cv2.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2)
        cv2.circle(img,center=(x+w//2,y+h//2),radius=w//2,color=(0,255,0),thickness=1)
        
        ids, confidence = recogizer.predict(gray[y:y + h, x:x + w])
        
        if confidence > 80:  
            global warningtime
            warningtime += 1
            if warningtime > 100:
               warning()
               warningtime = 0
            cv2.putText(img, 'unkonw', (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
        else:
            cv2.putText(img,str(names[ids-1]), (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
    cv2.imshow('result',img)
    
def name():
    path = './data/jm/'
    
    imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
    for imagePath in imagePaths:
       name = str(os.path.split(imagePath)[1].split('.',2)[1])
       names.append(name)
cap=cv2.VideoCapture('1.mp4')
name()
while True:
    flag,frame=cap.read()
    if not flag:
        break
    face_detect_demo(frame)
    if ord(' ') == cv2.waitKey(10):
        break
cv2.destroyAllWindows()
cap.release()
  
效果:根据人脸识别出人物名字id     对于trainer.yml没有存储的人脸会显示unknown     
5.网页视频&RTMP协议 
RTMP(Real-Time Messaging Protocol实时消息传送协议)的缩写,它是Adobe Systems公司为Flash播放器和服务器之间音频、视频和数据传输开发的协议。这是一个标准的,未加密的实时消息传递协议,默认端口是1935,如果未指定连接端口,那么flash客户端会尝试连接其他端口,其尝试连接顺序按照下列顺序依次连接:1935、443、80(RTMP), 80(RTMPT)。  
电视节目rtmp推流地址 
   
import cv2
class CaptureVideo(object):
	def net_video(self):
		
		cam = cv2.VideoCapture("rtmp://58.200.131.2:1935/livetv/cctv5")
		while cam.isOpened():
			sucess, frame = cam.read()
			cv2.imshow("Network", frame)
			cv2.waitKey(1)
if __name__ == "__main__":
	capture_video = CaptureVideo()
	capture_video.net_video()
  
可用于后续工程项目。 
                
                
                
        
        
    
  
 
 |