上一篇
1.检测多个人脸
import cv2 as cv
def face_detect_demo():
gary = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
face_detect = cv.CascadeClassifier('D:/Junior second/shixun/OPENCV(WIN)/opencv/sources/data/haarcascades/haarcascade_frontalface_default.xml')
face = face_detect.detectMultiScale(gary)
for x,y,w,h in face:
cv.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2)
cv.imshow('result',img)
img = cv.imread('face2.jpg')
face_detect_demo()
while True:
if ord('q') == cv.waitKey(0):
break
cv.destroyAllWindows()
效果:识别出图片中所有人脸
2.视频检测
import cv2 as cv
def face_detect_demo(img):
gary = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
face_detect = cv.CascadeClassifier('D:/Junior second/shixun/OPENCV(WIN)/opencv/sources/data/haarcascades/haarcascade_frontalface_default.xml')
face = face_detect.detectMultiScale(gary)
for x,y,w,h in face:
cv.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2)
cv.imshow('result',img)
cap = cv.VideoCapture('3.mp4')
while cap.isOpened():
ret, frame = cap.read()
cv.namedWindow("result", 0)
cv.resizeWindow("result", 800, 450)
cv.imshow('result', frame)
face_detect_demo(frame)
if cv.waitKey(1) & 0xFF == ord('q'):
break
cv.destroyAllWindows()
cap.release()
效果:播放视频时可识别人脸
3. 人脸录入&数据训练
import os
import cv2
import sys
from PIL import Image
import numpy as np
def getImageAndLabels(path):
facesSamples=[]
ids=[]
imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
face_detector = cv2.CascadeClassifier('D:/Junior second/shixun/OPENCV(WIN)/opencv/sources/data/haarcascades/haarcascade_frontalface_alt2.xml')
print('数据排列:',imagePaths)
for imagePath in imagePaths:
PIL_img=Image.open(imagePath).convert('L')
img_numpy=np.array(PIL_img,'uint8')
faces = face_detector.detectMultiScale(img_numpy)
id = int(os.path.split(imagePath)[1].split('.')[0])
for x,y,w,h in faces:
ids.append(id)
facesSamples.append(img_numpy[y:y+h,x:x+w])
print('id:', id)
print('fs:', facesSamples)
return facesSamples,ids
if __name__ == '__main__':
path='./data/jm/'
faces,ids=getImageAndLabels(path)
recognizer=cv2.face.LBPHFaceRecognizer_create()
recognizer.train(faces,np.array(ids))
recognizer.write('trainer/trainer.yml')
得到人脸灰度值(颜色越浅的地方值越小) 得到trainer.yml训练结果,用于后续识别人和id的对应关系。
注意:卸载原来的opencv-python,安装opencv-contrib-python
4.视频人脸识别
import cv2
import numpy as np
import os
import urllib
import urllib.request
import hashlib
recogizer=cv2.face.LBPHFaceRecognizer_create()
recogizer.read('trainer/trainer.yml')
names=[]
warningtime = 0
def md5(str):
import hashlib
m = hashlib.md5()
m.update(str.encode("utf8"))
return m.hexdigest()
data = urllib.parse.urlencode({'u': user, 'p': password, 'm': phone, 'c': content})
send_url = smsapi + 'sms?' + data
response = urllib.request.urlopen(send_url)
the_page = response.read().decode('utf-8')
print(statusStr[the_page])
def face_detect_demo(img):
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
face_detector=cv2.CascadeClassifier('D:/Junior second/shixun/OPENCV(WIN)//opencv/sources/data/haarcascades/haarcascade_frontalface_alt2.xml')
face=face_detector.detectMultiScale(gray,1.1,5,cv2.CASCADE_SCALE_IMAGE,(100,100),(300,300))
for x,y,w,h in face:
cv2.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2)
cv2.circle(img,center=(x+w//2,y+h//2),radius=w//2,color=(0,255,0),thickness=1)
ids, confidence = recogizer.predict(gray[y:y + h, x:x + w])
if confidence > 80:
global warningtime
warningtime += 1
if warningtime > 100:
warning()
warningtime = 0
cv2.putText(img, 'unkonw', (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
else:
cv2.putText(img,str(names[ids-1]), (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
cv2.imshow('result',img)
def name():
path = './data/jm/'
imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
for imagePath in imagePaths:
name = str(os.path.split(imagePath)[1].split('.',2)[1])
names.append(name)
cap=cv2.VideoCapture('1.mp4')
name()
while True:
flag,frame=cap.read()
if not flag:
break
face_detect_demo(frame)
if ord(' ') == cv2.waitKey(10):
break
cv2.destroyAllWindows()
cap.release()
效果:根据人脸识别出人物名字id 对于trainer.yml没有存储的人脸会显示unknown
5.网页视频&RTMP协议
RTMP(Real-Time Messaging Protocol实时消息传送协议)的缩写,它是Adobe Systems公司为Flash播放器和服务器之间音频、视频和数据传输开发的协议。这是一个标准的,未加密的实时消息传递协议,默认端口是1935,如果未指定连接端口,那么flash客户端会尝试连接其他端口,其尝试连接顺序按照下列顺序依次连接:1935、443、80(RTMP), 80(RTMPT)。
电视节目rtmp推流地址
import cv2
class CaptureVideo(object):
def net_video(self):
cam = cv2.VideoCapture("rtmp://58.200.131.2:1935/livetv/cctv5")
while cam.isOpened():
sucess, frame = cam.read()
cv2.imshow("Network", frame)
cv2.waitKey(1)
if __name__ == "__main__":
capture_video = CaptureVideo()
capture_video.net_video()
可用于后续工程项目。
|