神经网络激活函数求导
1、Sigmoid 激活函数
σ
(
x
)
=
1
1
+
e
?
x
\sigma(x) = \frac{1}{1 + e^{-x}}
σ(x)=1+e?x1??
其导函数为:
σ
′
(
x
)
=
?
?
x
1
1
+
e
?
x
=
e
?
x
(
1
+
e
?
x
)
2
=
1
(
1
+
e
?
x
)
2
?
e
?
x
=
1
1
+
e
?
x
?
(
1
?
1
1
+
e
?
x
)
=
σ
(
x
)
?
(
1
?
σ
(
x
)
)
\begin{aligned} \sigma'(x) &= \frac{\partial}{\partial x}\frac{1}{1 + e^{-x}} \\\\&= \frac{e^{-x}}{(1 + e^{-x})^2}\\\\& = \frac{1}{(1 + e^{-x})^2}\cdot e^{-x}\\\\&=\frac{1}{1 + e^{-x}} \cdot (1 - \frac{1}{1 + e^{-x}})\\\\&=\sigma(x)\cdot (1 - \sigma(x))\end{aligned}
σ′(x)?=?x??1+e?x1?=(1+e?x)2e?x?=(1+e?x)21??e?x=1+e?x1??(1?1+e?x1?)=σ(x)?(1?σ(x))?????
2、Tanh 激活函数
Tanh 函数可以看作是放大并平移的 Sigmoid 函数,但因为是零中心化的 (zero-centered) ,通常收敛速度快于 Sigmoid 函数,下图是二者的对比:
其函数形式为:
t
a
n
h
(
x
)
=
e
x
?
e
?
x
e
x
+
e
?
x
=
1
?
e
?
2
x
1
+
e
?
2
x
=
2
?
(
1
+
e
?
2
x
)
1
+
e
?
2
x
=
2
1
+
e
?
2
x
?
1
=
2
σ
(
2
x
)
?
1
\begin{aligned}tanh(x) &= \frac{e^x - e^{-x}}{e^x + e^{-x}} \\\\&= \frac{1 - e^{-2x}}{1 + e^{-2x}} \\\\&= \frac{2 - (1 + e^{-2x})}{1 + e^{-2x}} \\\\&= \frac{2}{1 + e^{-2x}} -1 \\\\&= 2\sigma(2x) - 1\end{aligned}
tanh(x)?=ex+e?xex?e?x?=1+e?2x1?e?2x?=1+e?2x2?(1+e?2x)?=1+e?2x2??1=2σ(2x)?1???
其导函数为:
t
a
n
h
′
(
x
)
=
(
e
x
+
e
?
x
)
2
?
(
e
x
?
e
?
x
)
2
(
e
x
+
e
?
x
)
2
=
1
?
t
a
n
h
2
(
x
)
\begin{aligned}tanh'(x) &= \frac{(e^x + e^{-x})^2 -(e^x - e^{-x})^2}{(e^x + e^{-x})^2} \\\\&= 1-tanh^2(x)\end{aligned}
tanh′(x)?=(ex+e?x)2(ex+e?x)2?(ex?e?x)2?=1?tanh2(x)??
3、Softmax 激活函数
Softmax 函数将多个标量映射为一个概率分布,其形式为:
y
i
=
s
o
f
t
m
a
x
(
z
i
)
=
e
z
i
∑
j
=
1
C
e
z
j
y_i = softmax(z_i) = \frac{e^{z_i}}{\sum\limits_{j=1}^{C}e^{z_j}}
yi?=softmax(zi?)=j=1∑C?ezj?ezi?????
y
i
y_i
yi?? 表示第
i
i
i? 个输出值,即属于类别
i
i
i?? 的概率,
∑
i
=
1
C
y
i
=
1
\sum\limits_{i = 1}^Cy_i = 1
i=1∑C?yi?=1?
z
=
W
T
x
z = W^Tx
z=WTx ,表示线性方程,Softmax 函数用于多分类,会对应多个方程。
首先求标量形式的导数,即第
i
i
i? 个输出对于第
j
j
j? 个输入的偏导数:
?
y
i
?
z
j
=
?
e
z
i
∑
j
=
1
C
e
z
j
?
z
j
\frac{\partial y_i}{\partial z_j} = \frac{\partial \frac{e^{z_i}}{\sum\limits_{j=1}^{C}e^{z_j}}}{\partial z_j}
?zj??yi??=?zj??j=1∑C?ezj?ezi?????
其中
e
z
i
e^{z_i}
ezi? 对
z
j
z_j
zj? 求导要分情况讨论:
?
e
z
i
?
z
j
=
{
e
z
i
??
,
??
i
f
??
i
=
j
0
??
,
??
i
f
??
i
=?
j
\frac{\partial e^{z_i}}{\partial z_j} = \left \{\begin{aligned} & e^{z_i}\ \ , \ \ & if \ \ i = j \\ &0\ \ ,\ \ &if \ \ i \not= j \end{aligned}\right.
?zj??ezi??={?ezi???,??0??,???if??i=jif??i?=j?????
那么当
i
=
j
i = j
i=j?? 时:
?
y
i
?
z
j
=
e
z
i
∑
j
=
1
C
e
z
j
?
e
z
i
e
z
j
(
∑
j
=
1
C
e
z
j
)
2
=
e
z
i
∑
j
=
1
C
e
z
j
?
e
z
i
∑
j
=
1
C
e
z
j
e
z
j
∑
j
=
1
C
e
z
j
=
y
i
?
y
i
y
j
\begin{aligned}\frac{\partial y_i}{\partial z_j} &= \frac{e^{z_i}\sum\limits_{j=1}^Ce^{z_j} - e^{z_i}e^{z_j}}{(\sum\limits_{j=1}^Ce^{z_j})^2} \\\\&= \frac{e^{z_i}}{\sum\limits_{j=1}^Ce^{z_j}} - \frac{e^{z_i}}{\sum\limits_{j=1}^Ce^{z_j}}\frac{e^{z_j}}{\sum\limits_{j=1}^Ce^{z_j}} \\\\&= y_i - y_iy_j\end{aligned}
?zj??yi???=(j=1∑C?ezj?)2ezi?j=1∑C?ezj??ezi?ezj??=j=1∑C?ezj?ezi???j=1∑C?ezj?ezi??j=1∑C?ezj?ezj??=yi??yi?yj???
当
i
=?
j
i \not= j
i?=j? 时:
?
y
i
?
z
j
=
0
?
e
z
i
e
z
j
(
∑
j
=
1
C
e
z
j
)
2
=
?
y
i
y
j
\frac{\partial y_i}{\partial z_j} = \frac{0 - e^{z_i}e^{z_j}}{(\sum\limits_{j=1}^Ce^{z_j})^2} = -y_iy_j
?zj??yi??=(j=1∑C?ezj?)20?ezi?ezj??=?yi?yj?
两者合并:
?
y
i
?
z
j
=
1
{
i
=
j
}
y
i
?
y
i
y
j
\frac{\partial y_i}{\partial z_j} = \pmb{1}\{i=j\}y_i - y_iy_j
?zj??yi??=111{i=j}yi??yi?yj?
其中
1
{
i
=
j
}
=
{
1
,
i
f
??
i
=
j
0
,
i
f
??
i
=?
j
\pmb{1}\{i=j\} = \left\{\begin{aligned} & 1, \quad if \ \ i = j \\&0,\quad if \ \ i \not= j \end{aligned}\right.
111{i=j}={?1,if??i=j0,if??i?=j??
|