IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> lidar_align联合标定激光雷达和IMU外参 -> 正文阅读

[人工智能]lidar_align联合标定激光雷达和IMU外参

lidar_align联合标定激光雷达和IMU外参

运行LIO-SAM之前需要联合标定激光雷达和IMU的外参,官方推荐的方案是浙大的开源联合标定方案:lidar_IMU_calib
发现采用苏黎世理工的方案更加简单粗暴一点:lidar_align,具体操作步骤如下:


1.下载源码

建议下载修正过后的代码:lidar_align_wwtx
建立工作空间catkin_ws,按照以下方式进行编译:

cd catkin_ws
catkin_make
source devel/setup.bash
roslaunch lidar_align lidar_align.launch

注意,提前录制bag包,录制的包中只保留imu和lidar的话题,并且,在启动程序前,找到launch文件,修改bag所在的路径,不用修改任何话题,程序会自己找到话题。


2.源码编译时遇到的错误

错误一:编译时出现Could not find NLOPTConfig.cmake
解决办法:找到这个文件并将其放入到工程目录下,并在CMakeLists.txt里加上这样一句话:

list(APPEND CMAKE_FIND_ROOT_PATH ${PROJECT_SOURCE_DIR})
set (CMAKE_PREFIX_PATH "/usr/local/lib/cmake/nlopt")

错误二:No odom messages found
因为这里面有odom里程计的数据而没有加入IMU数据,需要自己在loader.cc里进行改写。于是上网搜索了一下,有位博主自己改写了:链接或者下载上述推荐代码,已经改写完成:lidar_align


Active Transformation Vector (x,y,z,rx,ry,rz) from the Pose Sensor Frame to  the Lidar Frame:
[-0.0608575, -0.0758112, 0.27089, 0.00371254, 0.00872398, 1.60227]
//接下来的矩阵是需要关注的,前3*3是用于转换矩阵,最后一列是平移矩阵,在lio_sam中的param.yaml中可以找到
Active Transformation Matrix from the Pose Sensor Frame to  the Lidar Frame:
-0.0314953  -0.999473  0.0078319 -0.0608575
  0.999499 -0.0314702 0.00330021 -0.0758112
 -0.003052 0.00793192   0.999964    0.27089
         0          0          0          1

Active Translation Vector (x,y,z) from the Pose Sensor Frame to  the Lidar Frame:
[-0.0608575, -0.0758112, 0.27089]

Active Hamiltonen Quaternion (w,x,y,z) the Pose Sensor Frame to  the Lidar Frame:
[0.69588, 0.00166397, 0.00391012, 0.718145]

Time offset that must be added to lidar timestamps in seconds:
0.00594481

ROS Static TF Publisher: <node pkg="tf" type="static_transform_publisher" name="pose_lidar_broadcaster" args="-0.0608575 -0.0758112 0.27089 0.00166397 0.00391012 0.718145 0.69588 POSE_FRAME LIDAR_FRAME 100" />

3.编译并运行LIO-SAM

安装并编译好LIOSAM
遇到的错误:
Error: GTSAM was built against a different version of Eigen。
这个问题是GTSAM自带的eigen库和之前安装的eigen库的版本不同导致的。
解决办法:
修改gtsam下的CMakeLists.txt文件中的内容,在if(GTSAM_USE_SYSTEM_EIGEN)前面加上set(GTSAM_USE_SYSTEM_EIGEN ON),使得gtsam使用自己安装的eigen而不是它自带的eigen。然后重新编译gtsam,之后再编译LIO-SAM,问题解决。

/usr/bin/ld: 找不到 -lBoost::timer
找到CMake.Lists文件,在第27行后添加:

find_package(Boost REQUIRED COMPONENTS timer)

在运行前需要修改一下param.yaml文件:

lio_sam:

  # Topics
  # 修改话题激光雷达和IMU话题
  pointCloudTopic: "points_raw"               # Point cloud data
  imuTopic: "imu_correct"                     # IMU data
  odomTopic: "odometry/imu"                   # IMU pre-preintegration odometry, same frequency as IMU
  gpsTopic: "odometry/gpsz"                   # GPS odometry topic from navsat, see module_navsat.launch file

  # Frames
  lidarFrame: "base_link"
  baselinkFrame: "base_link"
  odometryFrame: "odom"
  mapFrame: "map"

  # GPS Settings
  useImuHeadingInitialization: false           # if using GPS data, set to "true"
  useGpsElevation: false                      # if GPS elevation is bad, set to "false"
  gpsCovThreshold: 2.0                        # m^2, threshold for using GPS data
  poseCovThreshold: 25.0                      # m^2, threshold for using GPS data
  
  # Export settings
  savePCD: false                              # https://github.com/TixiaoShan/LIO-SAM/issues/3
  savePCDDirectory: "/Downloads/LOAM/"        # in your home folder, starts and ends with "/". Warning: the code deletes "LOAM" folder then recreates it. See "mapOptimization" for implementation

  # Sensor Settings 激光雷达类型
  sensor: velodyne                            # lidar sensor type, either 'velodyne' or 'ouster'
  N_SCAN: 16                                  # number of lidar channel (i.e., 16, 32, 64, 128)
  Horizon_SCAN: 1800                          # lidar horizontal resolution (Velodyne:1800, Ouster:512,1024,2048)
  downsampleRate: 1                           # default: 1. Downsample your data if too many points. i.e., 16 = 64 / 4, 16 = 16 / 1
  lidarMinRange: 1.0                          # default: 1.0, minimum lidar range to be used
  lidarMaxRange: 1000.0                       # default: 1000.0, maximum lidar range to be used

  # IMU Settings 这个需要改变IMU噪声和重力加速度
  imuAccNoise: 3.9939570888238808e-03
  imuGyrNoise: 1.5636343949698187e-03
  imuAccBiasN: 6.4356659353532566e-05
  imuGyrBiasN: 3.5640318696367613e-05
  imuGravity: 9.80511
  imuRPYWeight: 0.01

  # Extrinsics (lidar -> IMU)这个是上述标定的参数
  extrinsicTrans: [0.0, 0.0, 0.0] #注意这个是平移向量,标定的4*4矩阵的最后一列
  # extrinsicRot: [-1, 0, 0,
  #                 0, 1, 0,
  #                 0, 0, -1]
  # extrinsicRPY: [0,  1, 0,
  #                -1, 0, 0,
  #                 0, 0, 1]
  extrinsicRot: [1, 0, 0,    #这个是4*4的前面的3*3
                  0, 1, 0,
                  0, 0, 1]
  extrinsicRPY: [1, 0, 0,    #这个是4*4的前面的3*3
                  0, 1, 0,
                  0, 0, 1]

  # LOAM feature threshold
  edgeThreshold: 1.0
  surfThreshold: 0.1
  edgeFeatureMinValidNum: 10
  surfFeatureMinValidNum: 100

  # voxel filter paprams
  odometrySurfLeafSize: 0.4                     # default: 0.4 - outdoor, 0.2 - indoor
  mappingCornerLeafSize: 0.2                    # default: 0.2 - outdoor, 0.1 - indoor
  mappingSurfLeafSize: 0.4                      # default: 0.4 - outdoor, 0.2 - indoor

  # robot motion constraint (in case you are using a 2D robot)
  z_tollerance: 1000                            # meters
  rotation_tollerance: 1000                     # radians

  # CPU Params
  numberOfCores: 4                              # number of cores for mapping optimization
  mappingProcessInterval: 0.15                  # seconds, regulate mapping frequency

  # Surrounding map
  surroundingkeyframeAddingDistThreshold: 1.0   # meters, regulate keyframe adding threshold
  surroundingkeyframeAddingAngleThreshold: 0.2  # radians, regulate keyframe adding threshold
  surroundingKeyframeDensity: 2.0               # meters, downsample surrounding keyframe poses   
  surroundingKeyframeSearchRadius: 50.0         # meters, within n meters scan-to-map optimization (when loop closure disabled)

  # Loop closure
  loopClosureEnableFlag: true
  loopClosureFrequency: 1.0                     # Hz, regulate loop closure constraint add frequency
  surroundingKeyframeSize: 50                   # submap size (when loop closure enabled)
  historyKeyframeSearchRadius: 15.0             # meters, key frame that is within n meters from current pose will be considerd for loop closure
  historyKeyframeSearchTimeDiff: 30.0           # seconds, key frame that is n seconds older will be considered for loop closure
  historyKeyframeSearchNum: 25                  # number of hostory key frames will be fused into a submap for loop closure
  historyKeyframeFitnessScore: 0.3              # icp threshold, the smaller the better alignment

  # Visualization
  globalMapVisualizationSearchRadius: 1000.0    # meters, global map visualization radius
  globalMapVisualizationPoseDensity: 10.0       # meters, global map visualization keyframe density
  globalMapVisualizationLeafSize: 1.0           # meters, global map visualization cloud density




# Navsat (convert GPS coordinates to Cartesian)
navsat:
  frequency: 50
  wait_for_datum: false
  delay: 0.0
  magnetic_declination_radians: 0
  yaw_offset: 0
  zero_altitude: true
  broadcast_utm_transform: false
  broadcast_utm_transform_as_parent_frame: false
  publish_filtered_gps: false

# EKF for Navsat
ekf_gps:
  publish_tf: false
  map_frame: map
  odom_frame: odom
  base_link_frame: base_link
  world_frame: odom

  frequency: 50
  two_d_mode: false
  sensor_timeout: 0.01
  # -------------------------------------
  # External IMU:
  # -------------------------------------
  imu0: imu_correct
  # make sure the input is aligned with ROS REP105. "imu_correct" is manually transformed by myself. EKF can also transform the data using tf between your imu and base_link
  imu0_config: [false, false, false,
                true,  true,  true,
                false, false, false,
                false, false, true,
                true,  true,  true]
  imu0_differential: false
  imu0_queue_size: 50 
  imu0_remove_gravitational_acceleration: true
  # -------------------------------------
  # Odometry (From Navsat):
  # -------------------------------------
  odom0: odometry/gps
  odom0_config: [true,  true,  true,
                 false, false, false,
                 false, false, false,
                 false, false, false,
                 false, false, false]
  odom0_differential: false
  odom0_queue_size: 10

  #                            x     y     z     r     p     y   x_dot  y_dot  z_dot  r_dot p_dot y_dot x_ddot y_ddot z_ddot
  process_noise_covariance: [  1.0,  0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,
                               0,    1.0,  0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,
                               0,    0,    10.0, 0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,
                               0,    0,    0,    0.03, 0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,
                               0,    0,    0,    0,    0.03, 0,    0,     0,     0,     0,    0,    0,    0,    0,      0,
                               0,    0,    0,    0,    0,    0.1,  0,     0,     0,     0,    0,    0,    0,    0,      0,
                               0,    0,    0,    0,    0,    0,    0.25,  0,     0,     0,    0,    0,    0,    0,      0,
                               0,    0,    0,    0,    0,    0,    0,     0.25,  0,     0,    0,    0,    0,    0,      0,
                               0,    0,    0,    0,    0,    0,    0,     0,     0.04,  0,    0,    0,    0,    0,      0,
                               0,    0,    0,    0,    0,    0,    0,     0,     0,     0.01, 0,    0,    0,    0,      0,
                               0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0.01, 0,    0,    0,      0,
                               0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0.5,  0,    0,      0,
                               0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0.01, 0,      0,
                               0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0.01,   0,
                               0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0.015]


参考

激光雷达和IMU联合标定并运行LIOSAM


  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-11 22:11:31  更:2022-03-11 22:16:13 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/9 14:45:10-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码