IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 第三单元 用python学习微积分(二十)壳层法、圆盘法求体积 (上) -> 正文阅读

[人工智能]第三单元 用python学习微积分(二十)壳层法、圆盘法求体积 (上)

本文内容来自于学习麻省理工学院公开课:单变量微积分-壳层法、圆盘法求体积-网易公开课

一、切片法球体积 (继续建立积分的思想)

?

?

如图, 红色切片部分的体积 \Delta V = A\Delta x

这个式子取极限,则有 dV = A(x)dx

全部面积为 V = \int A(x)dx\approx \sum A_i\Delta x

二、旋转立方体(solids of revolution)

圆盘法介绍:

老师先画了一条x轴上方曲线,看着像sinx, 之后出题,这个曲线绕x轴一周形成一个椭圆,可以猜想,当对这个椭圆切片,可以得到一个?,因为图形绕x轴旋转不会改变函数值到x轴的距离,而这个距离就是这个?的半径。

于是有公式 dV = \pi y^2dx,假设这个曲线就是sin(x), 于是有体积公式 V = \int_{0}^{\pi} \pi sin^2(x)dx

?

from sympy import *
import matplotlib.pyplot as plt
import numpy as np
from enum import Enum
from itertools import product, combinations

from matplotlib import cm
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(12, 12),
                 facecolor='lightyellow'
                )
# draw sphere
ax = fig.gca(fc='whitesmoke',
               projection='3d' 
              )
 
class EnumAxis(Enum):
    XAxis = 1
    YAxis = 2
    ZAxis = 3
    
def fromXYZM(xyzM):
    ret = []
    
    m=range(0,xyzM.shape[0])
    
    for b in zip(m,[0]):
        ret.append((xyzM[b]))
    for b in zip(m,[1]):
        ret.append((xyzM[b]))
    for b in zip(m,[2]):
        ret.append((xyzM[b]))
    return ret

def plot_surface(x, y, z, dx, dy, dz, ax):
    xx = np.linspace(x, x+dx, 2)
    yy = np.linspace(y, y+dy, 2)
    zz = np.linspace(z, z+dz, 2)
    
    if(dz == 0):
        xx, yy = np.meshgrid(xx, yy)
        ax.plot_surface(xx, yy, z, alpha=0.25)
    
    if(dx == 0):
        yy, zz = np.meshgrid(yy, zz)
        ax.plot_surface(x, yy, zz, alpha=0.25)
    
    if(dy == 0):
        xx, zz = np.meshgrid(xx, zz)
        ax.plot_surface(xx, y, zz, alpha=0.25)
    

def plot_opaque_cube(x, y, z, dx, dy, dz, ax):

    xx = np.linspace(x, x+dx, 2)
    yy = np.linspace(y, y+dy, 2)
    zz = np.linspace(z, z+dz, 2)

    xx, yy = np.meshgrid(xx, yy)
    ax.plot_surface(xx, yy, z)
    ax.plot_surface(xx, yy, z+dz)

    yy, zz = np.meshgrid(yy, zz)
    ax.plot_surface(x, yy, zz)
    ax.plot_surface(x+dx, yy, zz)

    xx, zz = np.meshgrid(xx, zz)
    ax.plot_surface(xx, y, zz)
    ax.plot_surface(xx, y+dy, zz)
    # ax.set_xlim3d(-dx, dx*2, 20)
    # ax.set_xlim3d(-dx, dx*2, 20)
    # ax.set_xlim3d(-dx, dx*2, 20)
    
def DrawAxis(ax, xMax, yMax, zMax):
    # 设置坐标轴标题和刻度
    ax.set(xlabel='X',
           ylabel='Y',
           zlabel='Z',
           xticks=np.arange(-xMax, xMax, 1),
           yticks=np.arange(-yMax, yMax, 1),
           zticks=np.arange(-zMax, zMax, 1)
          )

    ax.plot3D(xs=[xMax,-xMax, 0,0, 0, 0, 0,0, ],    # x 轴坐标
              ys=[0, 0,0, yMax,-yMax, 0, 0,0, ],    # y 轴坐标
              zs=[0, 0,0, 0,0, 0, zMax,-zMax ],    # z 轴坐标
              zdir='z',    # 
              c='k',    # color
              marker='o',    # 标记点符号
              mfc='r',    # marker facecolor
              mec='g',    # marker edgecolor
              ms=10,    # size
            )

def Rx(x,y,z,theta):
    A = [x,y,z] * np.matrix([[ 1, 0           , 0           ],
                   [ 0, cos(theta),-sin(theta)],
                   [ 0, sin(theta), cos(theta)]])
    return fromXYZM(A)
 
def Ry(x,y,z,theta):
    A = [x,y,z] * np.matrix([[ cos(theta), 0, sin(theta)],
                   [ 0           , 1, 0           ],
                   [-sin(theta), 0, cos(theta)]])
    return fromXYZM(A)
 
def Rz(x,y,z,theta):
    A = [x,y,z] * np.matrix([[ cos(theta), -sin(theta), 0 ],
                   [ sin(theta), cos(theta) , 0 ],
                   [ 0           , 0            , 1 ]])
    return fromXYZM(A)

def XYRotateByAxis(xFrom,xTo,steps,expr,theta,color,ax,rotatedBy):
    yarr = []
    xarr = np.linspace(xFrom ,xTo, steps) 
    xyz = []
    xx = []
    yy = []
    zz = []
    for xval in xarr:
        yval = expr.subs(x,xval)
        if rotatedBy == EnumAxis.XAxis:
            xyz =  Rx(xval,yval,0,theta)
        elif rotatedBy == EnumAxis.YAxis:
            xyz =  Ry(xval,yval,0,theta)
        else:
            xyz =  Rz(xval,yval,0,theta)
            
        xx.append(xyz[0])
        yy.append(xyz[1])
        zz.append(xyz[2])
    xarr1 = []
    xarr1.append(xx)
    yarr1 = []
    yarr1.append(yy)
    zarr1 = []
    zarr1.append(zz)

    ax.plot(xx, yy, zz, color)
    
def DrawXY(xFrom,xTo,steps,expr,color,label,plt):
    yarr = []
    xarr = np.linspace(xFrom ,xTo, steps) 
    for xval in xarr:
        yval = expr.subs(x,xval)
        yarr.append(yval)
    y_nparr = np.array(yarr) 
    plt.plot(xarr, y_nparr, c=color, label=label)    

def DrawInt(xFrom,xTo,steps,expr,color,plt, label=''):
    if(xFrom < 0 and xTo < 0):
        DrawIntNegative(xFrom,xTo,steps,expr,color,plt, label)
    else:
        if(xFrom > 0 and xTo > 0):
            DrawIntPostive(xFrom,xTo,steps,expr,color,plt, label)
        else:
            DrawIntNegative(xFrom,0,steps,expr,color,plt, label)
            DrawIntPostive(0,xTo,steps,expr,color,plt, label)
    
def DrawIntNegative(xFrom1,xTo1,steps,expr,color,plt, label=''):
    xFrom = 0 - xTo1
    xTo = 0 - xFrom1
    width = (xTo - xFrom)/steps
    xarr = []
    yarr = []
    area = 0
    xprev = xFrom
    yvalAll =  0
    xarr.append(0)
    yarr.append(0)
    for step in range(steps):
        yval = expr.subs(x,xprev)
        area += width * yval
        xarr.append(0-xprev)
        yarr.append(0-area)
        xprev= xprev + width
    plt.plot(xarr, yarr, c=color, label =label)
    
def DrawIntPostive(xFrom,xTo,steps,expr,color,plt, label=''):
    width = (xTo - xFrom)/steps
    xarr = []
    yarr = []
    area = 0
    xprev = xFrom
    yvalAll =  0
    xarr.append(0)
    yarr.append(0)
    for step in range(steps):
        yval = expr.subs(x,xprev)
        area += width * yval
        xarr.append(xprev)
        yarr.append(area)
        xprev= xprev + width
    plt.plot(xarr, yarr, c=color, label =label)    
        
def DrawRects(xFrom,xTo,steps,expr,color,plt, label=''):
    width = (xTo - xFrom)/steps
    xarrRect = []
    yarrRect = []
    area = 0
    xprev = xFrom
    yvalAll =  0
    for step in range(steps):
        yval = expr.subs(x,xprev + width)
        xarrRect.append(xprev)
        xarrRect.append(xprev)
        xarrRect.append(xprev + width)
        xarrRect.append(xprev + width)
        xarrRect.append(xprev)
        yarrRect.append(0)
        yarrRect.append(yval)
        yarrRect.append(yval)
        yarrRect.append(0)
        yarrRect.append(0)
        area += width * yval
        plt.plot(xarrRect, yarrRect, c=color)    
        xprev= xprev + width
        yvalAll += yval
    print('============================')    
    if len(label)!=0:
        print(label)    
    print('============================')
    print('width = ', width)
    print('ave = ', yvalAll / steps)
    print('area = ',area)
    areaFinal = (integrate(expr, (x,xFrom,xTo)))
    print ('area final = ',areaFinal)
    print ('ave final = ', areaFinal / (xTo - xFrom))

def TangentLine(exprY,x0Val,xVal):
    diffExpr = diff(exprY)
    x1,y1,xo,yo = symbols('x1 y1 xo yo')
    expr = (y1-yo)/(x1-xo) - diffExpr.subs(x,x0Val)
    eq = expr.subs(xo,x0Val).subs(x1,xVal).subs(yo,exprY.subs(x,x0Val))
    eq1 = Eq(eq,0)
    solveY = solve(eq1)
    return xVal,solveY

def DrawTangentLine(exprY, x0Val,xVal1, xVal2, clr, txt):
    x1,y1 = TangentLine(exprY, x0Val, xVal1)
    x2,y2 = TangentLine(exprY, x0Val, xVal2)
    plt.plot([x1,x2],[y1,y2], color = clr, label=txt)
    
def Newton(expr, x0):
    ret = x0 - expr.subs(x, x0)/ expr.diff().subs(x,x0)
    return ret

DrawAxis(ax, 5,5,5)

x = symbols('x')
expr = sin(x)
DrawXY(0,np.pi,100,expr,'b','',plt)
XYRotateByAxis(0,np.pi,100,expr,-0.5*np.pi,'r',ax, EnumAxis.XAxis)
XYRotateByAxis(0,np.pi,100,expr,0.5*np.pi,'r',ax, EnumAxis.XAxis)
XYRotateByAxis(0,np.pi,100,expr,-np.pi,'b',ax, EnumAxis.XAxis)

ax.plot([2, 2],[0,sin(2)],[0,0], 'c')
ax.plot([2.1, 2.1],[0,sin(2.1)],[0,0], 'c')

expr = np.pi* sin(x)**2
ax.text(5,1,0,
           s='              min(x) = 0 \n\
              max(x) = pi \n\
              y = sin(x) \n\
              expr = np.pi* sin(x)**2 \n\
              V = integrate(expr, (x,0,np.pi)) \n\
              = '+ format(integrate(expr, (x,0,np.pi))),
           fontsize=18,
           color='darkgreen')

#print ("area  =", integrate(expr, (x,0,np.pi)))
#x = symbols('x')
#expr = sin(x)
#XYRotateByX(0,np.pi,100,expr,1*np.pi,'r',ax)
# draw sphere
#ax = fig.add_subplot(133, projection='3d')
#u, v = np.mgrid[0:2*np.pi:20j, 0:np.pi:10j]
#x = np.cos(u)*np.sin(v)
#y = np.sin(u)*np.sin(v)
#z = np.cos(v)
#ax.plot_wireframe(x, y, z, color="red")
ax.view_init(elev=20,    # 仰角
             azim=20    # 方位角
            )
plt.show()
 
 

)

?1、 圆盘法(method of disk)求体积

这里老师把上方xy平面这个曲线看作是半圆,于是y的公式变作

(x - a)^2 +y^2 = a^2

曲线的边界变为 x\in(0,2a)

y^2 = a^2 - (x - a)^2 =a^2 -(x^2-2ax+a^2) = 2ax - x^2

考虑切片的情况,体积的计算情况不会改变

dV = \pi y^2dx

V = \int_{0}^{2a} \pi( 2ax - x^2)dx =\pi(ax^2 - \frac{x^3}{3})| _{0}^{2a} = 4a^3\pi - \frac{8a^3\pi}{3} = \frac{4a^3\pi}{3}

这里 0-2a 是球的半径,也是曲线在x轴的取值范围,当取值范围是不定值时,体积公式为

V = \pi(ax^2 - \frac{x^3}{3})

检查: V = \pi(ax^2 - \frac{x^3}{3})|_{0}^{x=a} = \frac{2\pi a^3}{3} 确实是整圆一半的体积

?

fig = plt.figure(figsize=(12, 12),
                 facecolor='lightyellow'
                )
# draw sphere
ax = fig.gca(fc='whitesmoke',
               projection='3d' 
              )
x = symbols('x')
a = 2
expr = (2*a*x-x**2)**0.5
V = np.pi*(a*x**2-x**3/3).subs(x,2*a)
DrawXY(0,4,100,expr,'b','',plt)

XYRotateByAxis(0,4,100,expr,-0.5*np.pi,'r',ax, RotateAxis.XAxis)
XYRotateByAxis(0,4,100,expr,0.5*np.pi,'r',ax, RotateAxis.XAxis)
XYRotateByAxis(0,4,100,expr,-np.pi,'b',ax, RotateAxis.XAxis)


ax.text(1,-5,0,
           s='              min(x) = 0 \n\
              max(x) = 4 \n\
              y = (+\-)(2*a*x-x**2)**0.5 \n\
              V = np.pi*(a*x**2-x**3/3) \n\
              = '+ format(V),
           fontsize=18,
           color='darkgreen')

ax.view_init(elev=20,    # 仰角
             azim=20    # 方位角
            )
plt.show()

?

?

?


                
        
        
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-12 17:30:27  更:2022-03-12 17:30:52 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/9 14:26:08-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码