IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 基于Triton Server部署BERT模型 -> 正文阅读

[人工智能]基于Triton Server部署BERT模型

背景

本文简要介绍如何使用 Triton 部署 BERT模型,主要参考 NVIDIA/DeepLearningExamples

准备工作

下载数据

进入到/data/DeepLearningExamples-master/PyTorch/LanguageModeling/BERT/data/squad后,下载数据:

bash ./squad_download.sh

下载模型

wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/bert_large_pyt_amp_ckpt_squad_qa1_1/versions/1/zip -O bert_large_pyt_amp_ckpt_squad_qa1_1_1.zip

在这里插入图片描述

由于各个脚本使用的是bert_qa.pt,所以,对上述模型文件进行重命名。

构建容器

bash ./scripts/docker/build.sh

在这里插入图片描述

Processing triggers for libc-bin (2.27-3ubuntu1) ...
Removing intermediate container 89010b0a75b2
 ---> 562bcc14dbfa
Step 15/15 : COPY . .
 ---> 23bac3585a43
Successfully built 23bac3585a43
Successfully tagged bert:latest

模型部署

将 checkpoint 导出为 torchscript

在宿主机(不需要容器内部)下,进入DeepLearningExamples-master/PyTorch/LanguageModeling/BERT执行下述脚本将 checkpoint 转为 torchscript:

bash ./triton/export_model.sh

转换过程状态:

=============
== PyTorch ==
=============

NVIDIA Release 20.06 (build 13419386)
PyTorch Version 1.6.0a0+9907a3e

Container image Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.

Copyright (c) 2014-2020 Facebook Inc.
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
Copyright (c) 2012-2014 Deepmind Technologies    (Koray Kavukcuoglu)
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
Copyright (c) 2011-2013 NYU                      (Clement Farabet)
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
Copyright (c) 2006      Idiap Research Institute (Samy Bengio)
Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
Copyright (c) 2015      Google Inc.
Copyright (c) 2015      Yangqing Jia
Copyright (c) 2013-2016 The Caffe contributors
All rights reserved.

Various files include modifications (c) NVIDIA CORPORATION.  All rights reserved.
NVIDIA modifications are covered by the license terms that apply to the underlying project or file.

NOTE: Legacy NVIDIA Driver detected.  Compatibility mode ENABLED.

NOTE: MOFED driver for multi-node communication was not detected.
      Multi-node communication performance may be reduced.

deploying model bertQA-ts-script in format pytorch_libtorch
/opt/conda/lib/python3.6/site-packages/torch/jit/_recursive.py:160: UserWarning: 'bias' was found in ScriptModule constants,  but it is a non-constant parameter. Consider removing it.
  " but it is a non-constant {}. Consider removing it.".format(name, hint))

conversion correctness test results
-----------------------------------
maximal absolute error over dataset (L_inf):  0.0322265625

average L_inf error over output tensors:  0.02264404296875
variance of L_inf error over output tensors:  5.4970383644104004e-05
stddev of L_inf error over output tensors:  0.00741420148391612

time of error check of native model:  0.8040032386779785 seconds
time of error check of ts model:  1.7353665828704834 seconds

done

模型格式转换后,待部署的Triton模型将存于BERT/results/triton_models

在这里插入图片描述

./triton/export_model.shEXPORT_FORMAT值为ts-script表示转为torchscript格式。如果想要以ONNX格式部署,则可以将./triton/export_model.sh中的EXPORT_FORMAT值设置为onnx。此外,还要注意相应改动triton_model_name,比如改为bertQA-onnx,以对新转换的模型进行合适命名。

在这里插入图片描述

启动 Triton server

可以通过执行以下命令来启动Triton server:

docker run --rm --gpus device=0 --ipc=host --network=host -p 8000:8000 -p 8001:8001 -p 8002:8002 -v $PWD/results/triton_models:/models nvcr.io/nvidia/tritonserver:20.06-v1-py3 trtserver --model-store=/models --log-verbose=1

由于上述镜像nvcr.io/nvidia/tritonserver:20.06-v1-py3本地尚未拉取,所以执行上述命令后,会优先拉取该镜像。

另外,注意这里指定的模型位置是--model-store=/models映射的是./results/triton_models,且该目录下有2个模型,所以服务启动的时候会将2个模型都加载:

在这里插入图片描述

服务启动后,可以看下显存的占用情况:

在这里插入图片描述

启动自定义的Triton client

./triton/client.py为自定义的client代码。

Step1: 启动一个 client 容器

docker run -it --rm --ipc=host --network=host -v $PWD/vocab:/workspace/bert/vocab bert:latest

在这里插入图片描述

PS:
启动客户端无需指定GPU,且上述的启动方式,当在终端直接退出该容器后,该容器自动销毁。

如此便启动了一个容器,并进入容器当中。

Step2: 启动 client
进入到 client 代码目录:cd /workspace/bert/triton/,再运行如下代码,对 bertQA-ts-script 版模型进行请求:

python client.py --do_lower_case --version_2_with_negative --vocab_file=../vocab/vocab --triton-model-name=bertQA-ts-script

在这里插入图片描述

此时,client 端将向已在运行的 Triton server 发送一个请求,Triton server 接收请求并处理后,将请求返回。如果想输入自定义的文本段落和问题,则只需在运行client.py脚本时搭配--question--context参数并传入对应的内容。此外,可以通过--triton-model-name指定特定的模型。这里服务端加载了2个模型,所以client也可以对 onnx 版模型进行请求:

python client.py --do_lower_case --version_2_with_negative --vocab_file=../vocab/vocab --triton-model-name=bertQA-onnx

在这里插入图片描述

模型部署后的评估:Squad1.1

部署并评估模型,可以在宿主机下执行以下命令

bash ./triton/evaluate.sh

PS:
在部署和评测之前,先将之前启动的 Triton server 关闭,否则端口被冲突。

服务启动和评测运行状态如下:

=============
== PyTorch ==
=============

NVIDIA Release 20.06 (build 13419386)
PyTorch Version 1.6.0a0+9907a3e

Container image Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.

Copyright (c) 2014-2020 Facebook Inc.
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
Copyright (c) 2012-2014 Deepmind Technologies    (Koray Kavukcuoglu)
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
Copyright (c) 2011-2013 NYU                      (Clement Farabet)
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
Copyright (c) 2006      Idiap Research Institute (Samy Bengio)
Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
Copyright (c) 2015      Google Inc.
Copyright (c) 2015      Yangqing Jia
Copyright (c) 2013-2016 The Caffe contributors
All rights reserved.

Various files include modifications (c) NVIDIA CORPORATION.  All rights reserved.
NVIDIA modifications are covered by the license terms that apply to the underlying project or file.

NOTE: Legacy NVIDIA Driver detected.  Compatibility mode ENABLED.

NOTE: MOFED driver for multi-node communication was not detected.
      Multi-node communication performance may be reduced.

deploying model bert_large_fp32 in format pytorch_libtorch
/opt/conda/lib/python3.6/site-packages/torch/jit/_recursive.py:160: UserWarning: 'bias' was found in ScriptModule constants,  but it is a non-constant parameter. Consider removing it.
  " but it is a non-constant {}. Consider removing it.".format(name, hint))

conversion correctness test results
-----------------------------------
maximal absolute error over dataset (L_inf):  1.4185905456542969e-05

average L_inf error over output tensors:  1.0482966899871826e-05
variance of L_inf error over output tensors:  8.773056355456296e-12
stddev of L_inf error over output tensors:  2.961934562993635e-06

time of error check of native model:  1.596167802810669 seconds
time of error check of ts model:  2.414717435836792 seconds

done
Starting server...
Waiting for TRITON Server to be ready at http://localhost:8000...
000
.......TRITON Server is ready!

=============
== PyTorch ==
=============

NVIDIA Release 20.06 (build 13419386)
PyTorch Version 1.6.0a0+9907a3e

Container image Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.

Copyright (c) 2014-2020 Facebook Inc.
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
Copyright (c) 2012-2014 Deepmind Technologies    (Koray Kavukcuoglu)
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
Copyright (c) 2011-2013 NYU                      (Clement Farabet)
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
Copyright (c) 2006      Idiap Research Institute (Samy Bengio)
Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
Copyright (c) 2015      Google Inc.
Copyright (c) 2015      Yangqing Jia
Copyright (c) 2013-2016 The Caffe contributors
All rights reserved.

Various files include modifications (c) NVIDIA CORPORATION.  All rights reserved.
NVIDIA modifications are covered by the license terms that apply to the underlying project or file.

NOTE: Legacy NVIDIA Driver detected.  Compatibility mode ENABLED.

NOTE: MOFED driver for multi-node communication was not detected.
      Multi-node communication performance may be reduced.

Sending Requests: 100%|███████████████████████████████████████████████████████████████████████████| 10833/10833 [04:20<00:00, 27.84sentences/s-----------------------------█████████████████████████████████████████████████████████████████████▉| 10832/10833 [14:29<00:00, 12.28sentences/s]
Individual Time Runs
Total Time: 869886.3623142242 ms
-----------------------------
-----------------------------
Total Inference Time = 432310.23 forSentences processed = 10833
Throughput Average (sentences/sec) = 12.45
Throughput Average (batches/sec) = 1.56
-----------------------------
-----------------------------
Summary Statistics
Batch size = 8
Sequence Length = 384
Latency Confidence Level 95 (ms) = 594040.61627388
Latency Confidence Level 99 (ms)  = 615392.275094986
Latency Confidence Level 100 (ms)  = 619993.6480522156
Latency Average (ms)  = 319048.1366518239
-----------------------------
Sending Requests: 100%|███████████████████████████████████████████████████████████████████████████| 10833/10833 [15:16<00:00, 11.82sentences/s]
Processed Requests: 100%|█████████████████████████████████████████████████████████████████████████| 10833/10833 [15:16<00:00, 11.82sentences/s]

=============
== PyTorch ==
=============

NVIDIA Release 20.06 (build 13419386)
PyTorch Version 1.6.0a0+9907a3e

Container image Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.

Copyright (c) 2014-2020 Facebook Inc.
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
Copyright (c) 2012-2014 Deepmind Technologies    (Koray Kavukcuoglu)
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
Copyright (c) 2011-2013 NYU                      (Clement Farabet)
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
Copyright (c) 2006      Idiap Research Institute (Samy Bengio)
Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
Copyright (c) 2015      Google Inc.
Copyright (c) 2015      Yangqing Jia
Copyright (c) 2013-2016 The Caffe contributors
All rights reserved.

Various files include modifications (c) NVIDIA CORPORATION.  All rights reserved.
NVIDIA modifications are covered by the license terms that apply to the underlying project or file.

NOTE: Legacy NVIDIA Driver detected.  Compatibility mode ENABLED.

NOTE: MOFED driver for multi-node communication was not detected.
      Multi-node communication performance may be reduced.

trt_server_cont
tritonnet

需要注意的是,默认下以torchscript格式部署服务,并以Squad1.1数据集进行评测。如果想对onnx格式模型进行评测,将/triton/evaluate.sh中的EXPORT_FORMAT值从ts-script改为onnx

Various files include modifications (c) NVIDIA CORPORATION.  All rights reserved.
NVIDIA modifications are covered by the license terms that apply to the underlying project or file.

NOTE: Legacy NVIDIA Driver detected.  Compatibility mode ENABLED.

NOTE: MOFED driver for multi-node communication was not detected.
      Multi-node communication performance may be reduced.

deploying model bert_large_fp32 in format onnxruntime_onnx
/opt/conda/lib/python3.6/site-packages/torch/onnx/utils.py:955: UserWarning: No names were found for specified dynamic axes of provided input.Automatically generated names will be applied to each dynamic axes of input input__0
  'Automatically generated names will be applied to each dynamic axes of input {}'.format(key))
/opt/conda/lib/python3.6/site-packages/torch/onnx/utils.py:955: UserWarning: No names were found for specified dynamic axes of provided input.Automatically generated names will be applied to each dynamic axes of input input__1
  'Automatically generated names will be applied to each dynamic axes of input {}'.format(key))
/opt/conda/lib/python3.6/site-packages/torch/onnx/utils.py:955: UserWarning: No names were found for specified dynamic axes of provided input.Automatically generated names will be applied to each dynamic axes of input input__2
  'Automatically generated names will be applied to each dynamic axes of input {}'.format(key))
/opt/conda/lib/python3.6/site-packages/torch/onnx/utils.py:955: UserWarning: No names were found for specified dynamic axes of provided input.Automatically generated names will be applied to each dynamic axes of input output__0
  'Automatically generated names will be applied to each dynamic axes of input {}'.format(key))
/opt/conda/lib/python3.6/site-packages/torch/onnx/utils.py:955: UserWarning: No names were found for specified dynamic axes of provided input.Automatically generated names will be applied to each dynamic axes of input output__1
  'Automatically generated names will be applied to each dynamic axes of input {}'.format(key))
[libprotobuf WARNING google/protobuf/io/coded_stream.cc:604] Reading dangerously large protocol message.  If the message turns out to be larger than 2147483647 bytes, parsing will be halted for security reasons.  To increase the limit (or to disable these warnings), see CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h.
[libprotobuf WARNING google/protobuf/io/coded_stream.cc:81] The total number of bytes read was 1336539136

conversion correctness test results
-----------------------------------
maximal absolute error over dataset (L_inf):  0.00022530555725097656

average L_inf error over output tensors:  0.0001377016305923462
variance of L_inf error over output tensors:  6.448256743378049e-09
stddev of L_inf error over output tensors:  8.030103824595327e-05

time of error check of native model:  1.2507586479187012 seconds
time of error check of onnx model:  76.80649089813232 seconds

done
Starting server...
Waiting for TRITON Server to be ready at http://localhost:8000...
000
.......TRITON Server is ready!

=============
== PyTorch ==
=============

NVIDIA Release 20.06 (build 13419386)
PyTorch Version 1.6.0a0+9907a3e

Container image Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.

Copyright (c) 2014-2020 Facebook Inc.
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
Copyright (c) 2012-2014 Deepmind Technologies    (Koray Kavukcuoglu)
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
Copyright (c) 2011-2013 NYU                      (Clement Farabet)
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
Copyright (c) 2006      Idiap Research Institute (Samy Bengio)
Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
Copyright (c) 2015      Google Inc.
Copyright (c) 2015      Yangqing Jia
Copyright (c) 2013-2016 The Caffe contributors
All rights reserved.

Various files include modifications (c) NVIDIA CORPORATION.  All rights reserved.
NVIDIA modifications are covered by the license terms that apply to the underlying project or file.

NOTE: Legacy NVIDIA Driver detected.  Compatibility mode ENABLED.

NOTE: MOFED driver for multi-node communication was not detected.
      Multi-node communication performance may be reduced.

Sending Requests: 100%|███████████████████████████████████████████████████████████████████████████| 10833/10833 [04:40<00:00, 15.52sentences/s-----------------------------█████████████████████████████████████████████████████████████████████▉| 10832/10833 [14:23<00:00, 12.42sentences/s]
Individual Time Runs
Total Time: 863938.3265972137 ms
-----------------------------
-----------------------------
Total Inference Time = 418017.89 forSentences processed = 10833
Throughput Average (sentences/sec) = 12.54
Throughput Average (batches/sec) = 1.57
-----------------------------
-----------------------------
Summary Statistics
Batch size = 8
Sequence Length = 384
Latency Confidence Level 95 (ms) = 568533.2419872284
Latency Confidence Level 99 (ms)  = 591532.5634479523
Latency Confidence Level 100 (ms)  = 595446.0487365723
Latency Average (ms)  = 308500.2912194087
-----------------------------
Sending Requests: 100%|███████████████████████████████████████████████████████████████████████████| 10833/10833 [15:10<00:00, 11.90sentences/s]
Processed Requests: 100%|█████████████████████████████████████████████████████████████████████████| 10833/10833 [15:10<00:00, 11.90sentences/s]

=============
== PyTorch ==
=============

NVIDIA Release 20.06 (build 13419386)
PyTorch Version 1.6.0a0+9907a3e

Container image Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.

Copyright (c) 2014-2020 Facebook Inc.
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
Copyright (c) 2012-2014 Deepmind Technologies    (Koray Kavukcuoglu)
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
Copyright (c) 2011-2013 NYU                      (Clement Farabet)
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
Copyright (c) 2006      Idiap Research Institute (Samy Bengio)
Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
Copyright (c) 2015      Google Inc.
Copyright (c) 2015      Yangqing Jia
Copyright (c) 2013-2016 The Caffe contributors
All rights reserved.

Various files include modifications (c) NVIDIA CORPORATION.  All rights reserved.
NVIDIA modifications are covered by the license terms that apply to the underlying project or file.

NOTE: Legacy NVIDIA Driver detected.  Compatibility mode ENABLED.

NOTE: MOFED driver for multi-node communication was not detected.
      Multi-node communication performance may be reduced.

trt_server_cont
tritonnet
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-12 17:30:27  更:2022-03-12 17:32:31 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 15:45:01-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码