IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Python绘制Audition样式的语谱图 -> 正文阅读

[人工智能]Python绘制Audition样式的语谱图

import numpy as np
import matplotlib.pyplot as plt
import librosa.display
from matplotlib.colors import ListedColormap

audaspec_data = [
    [0.000009, 0.000025, 0.000020],
    [0.000227, 0.000394, 0.000344],
    [0.000630, 0.001132, 0.000994],
    [0.001157, 0.002212, 0.001945],
    [0.001770, 0.003620, 0.003193],
    [0.002441, 0.005351, 0.004740],
    [0.003146, 0.007400, 0.006596],
    [0.003863, 0.009765, 0.008773],
    [0.004574, 0.012444, 0.011284],
    [0.005263, 0.015438, 0.014149],
    [0.005915, 0.018745, 0.017385],
    [0.006517, 0.022366, 0.021016],
    [0.007055, 0.026298, 0.025066],
    [0.007519, 0.030543, 0.029559],
    [0.007899, 0.035100, 0.034526],
    [0.008186, 0.039967, 0.039996],
    [0.008372, 0.044917, 0.045704],
    [0.008449, 0.049806, 0.051470],
    [0.008412, 0.054644, 0.057306],
    [0.008255, 0.059432, 0.063218],
    [0.007976, 0.064172, 0.069213],
    [0.007570, 0.068866, 0.075297],
    [0.007036, 0.073514, 0.081473],
    [0.006372, 0.078118, 0.087748],
    [0.005580, 0.082677, 0.094126],
    [0.004661, 0.087192, 0.100611],
    [0.003616, 0.091663, 0.107209],
    [0.002448, 0.096089, 0.113924],
    [0.001162, 0.100471, 0.120761],
    [0.000000, 0.104807, 0.127725],
    [0.000000, 0.109097, 0.134820],
    [0.000000, 0.113340, 0.142053],
    [0.000000, 0.117535, 0.149430],
    [0.000000, 0.121681, 0.156957],
    [0.000000, 0.125775, 0.164635],
    [0.000000, 0.129813, 0.172465],
    [0.000000, 0.133793, 0.180449],
    [0.000000, 0.137711, 0.188587],
    [0.000000, 0.141564, 0.196880],
    [0.000000, 0.145349, 0.205328],
    [0.000000, 0.149061, 0.213929],
    [0.000000, 0.152697, 0.222682],
    [0.000000, 0.156253, 0.231586],
    [0.000000, 0.159725, 0.240639],
    [0.000000, 0.163108, 0.249838],
    [0.000000, 0.166400, 0.259179],
    [0.000000, 0.169595, 0.268659],
    [0.000000, 0.172690, 0.278272],
    [0.000000, 0.175679, 0.288013],
    [0.000000, 0.178560, 0.297877],
    [0.000000, 0.181327, 0.307856],
    [0.000000, 0.183977, 0.317943],
    [0.000000, 0.186505, 0.328132],
    [0.000000, 0.188907, 0.338412],
    [0.002729, 0.191180, 0.348776],
    [0.010315, 0.193320, 0.359212],
    [0.019126, 0.195323, 0.369711],
    [0.029250, 0.197186, 0.380262],
    [0.040768, 0.198906, 0.390852],
    [0.052483, 0.200479, 0.401470],
    [0.063783, 0.201904, 0.412102],
    [0.074815, 0.203177, 0.422735],
    [0.085670, 0.204298, 0.433355],
    [0.096405, 0.205265, 0.443950],
    [0.107060, 0.206075, 0.454507],
    [0.117665, 0.206728, 0.465013],
    [0.128237, 0.207223, 0.475456],
    [0.138791, 0.207560, 0.485820],
    [0.149336, 0.207739, 0.496093],
    [0.159879, 0.207759, 0.506260],
    [0.170424, 0.207622, 0.516308],
    [0.180973, 0.207329, 0.526222],
    [0.191527, 0.206882, 0.535989],
    [0.202086, 0.206283, 0.545592],
    [0.212649, 0.205535, 0.555019],
    [0.223213, 0.204641, 0.564256],
    [0.233776, 0.203606, 0.573288],
    [0.244336, 0.202433, 0.582101],
    [0.254889, 0.201127, 0.590682],
    [0.265431, 0.199696, 0.599018],
    [0.275959, 0.198143, 0.607098],
    [0.286469, 0.196478, 0.614908],
    [0.296957, 0.194706, 0.622438],
    [0.307420, 0.192836, 0.629676],
    [0.317853, 0.190876, 0.636613],
    [0.328253, 0.188836, 0.643239],
    [0.338617, 0.186725, 0.649545],
    [0.348940, 0.184552, 0.655524],
    [0.359220, 0.182330, 0.661170],
    [0.369454, 0.180067, 0.666476],
    [0.379638, 0.177775, 0.671437],
    [0.389771, 0.175466, 0.676051],
    [0.399850, 0.173149, 0.680314],
    [0.409873, 0.170836, 0.684226],
    [0.419839, 0.168538, 0.687787],
    [0.429747, 0.166262, 0.690998],
    [0.439603, 0.164004, 0.693879],
    [0.449403, 0.161777, 0.696424],
    [0.459147, 0.159595, 0.698630],
    [0.468831, 0.157472, 0.700497],
    [0.478455, 0.155420, 0.702024],
    [0.488017, 0.153453, 0.703211],
    [0.497516, 0.151585, 0.704058],
    [0.506950, 0.149829, 0.704567],
    [0.516318, 0.148198, 0.704739],
    [0.525620, 0.146703, 0.704580],
    [0.534854, 0.145357, 0.704090],
    [0.544019, 0.144172, 0.703274],
    [0.553114, 0.143157, 0.702137],
    [0.562139, 0.142325, 0.700684],
    [0.571092, 0.141683, 0.698918],
    [0.579973, 0.141238, 0.696847],
    [0.588780, 0.140999, 0.694477],
    [0.597514, 0.140968, 0.691814],
    [0.606175, 0.141147, 0.688868],
    [0.614763, 0.141538, 0.685645],
    [0.623276, 0.142142, 0.682154],
    [0.631715, 0.142959, 0.678402],
    [0.640078, 0.143988, 0.674397],
    [0.648366, 0.145225, 0.670147],
    [0.656579, 0.146667, 0.665661],
    [0.664715, 0.148310, 0.660949],
    [0.672775, 0.150147, 0.656018],
    [0.680759, 0.152173, 0.650877],
    [0.688666, 0.154382, 0.645535],
    [0.696496, 0.156767, 0.640002],
    [0.704248, 0.159323, 0.634285],
    [0.711921, 0.162045, 0.628392],
    [0.719512, 0.164932, 0.622330],
    [0.727021, 0.167980, 0.616108],
    [0.734445, 0.171183, 0.609734],
    [0.741785, 0.174536, 0.603217],
    [0.749037, 0.178039, 0.596564],
    [0.756200, 0.181684, 0.589785],
    [0.763274, 0.185467, 0.582887],
    [0.770258, 0.189384, 0.575881],
    [0.777150, 0.193431, 0.568774],
    [0.783948, 0.197604, 0.561575],
    [0.790653, 0.201898, 0.554292],
    [0.797263, 0.206310, 0.546934],
    [0.803777, 0.210836, 0.539508],
    [0.810194, 0.215473, 0.532023],
    [0.816513, 0.220219, 0.524486],
    [0.822733, 0.225070, 0.516905],
    [0.828853, 0.230023, 0.509287],
    [0.834873, 0.235077, 0.501640],
    [0.840792, 0.240228, 0.493969],
    [0.846614, 0.245464, 0.486281],
    [0.852346, 0.250773, 0.478581],
    [0.857993, 0.256144, 0.470872],
    [0.863557, 0.261572, 0.463156],
    [0.869040, 0.267053, 0.455435],
    [0.874445, 0.272582, 0.447711],
    [0.879772, 0.278160, 0.439983],
    [0.885022, 0.283785, 0.432253],
    [0.890192, 0.289459, 0.424522],
    [0.895284, 0.295182, 0.416789],
    [0.900293, 0.300957, 0.409055],
    [0.905220, 0.306787, 0.401321],
    [0.910058, 0.312677, 0.393589],
    [0.914797, 0.318642, 0.385866],
    [0.919457, 0.324652, 0.378138],
    [0.924035, 0.330712, 0.370404],
    [0.928528, 0.336825, 0.362664],
    [0.932932, 0.342996, 0.354919],
    [0.937244, 0.349228, 0.347169],
    [0.941459, 0.355524, 0.339414],
    [0.945575, 0.361887, 0.331653],
    [0.949587, 0.368320, 0.323887],
    [0.953493, 0.374825, 0.316117],
    [0.957289, 0.381404, 0.308343],
    [0.960972, 0.388058, 0.300563],
    [0.964541, 0.394787, 0.292776],
    [0.967993, 0.401591, 0.284978],
    [0.971326, 0.408470, 0.277169],
    [0.974532, 0.415431, 0.269356],
    [0.977601, 0.422481, 0.261546],
    [0.980524, 0.429625, 0.253749],
    [0.983293, 0.436867, 0.245977],
    [0.985900, 0.444213, 0.238243],
    [0.988337, 0.451665, 0.230560],
    [0.990597, 0.459224, 0.222945],
    [0.992674, 0.466891, 0.215414],
    [0.994562, 0.474668, 0.207989],
    [0.996254, 0.482555, 0.200694],
    [0.997745, 0.490549, 0.193556],
    [0.999032, 0.498651, 0.186607],
    [1.000000, 0.506857, 0.179883],
    [1.000000, 0.515166, 0.173425],
    [1.000000, 0.523573, 0.167285],
    [1.000000, 0.532077, 0.161519],
    [1.000000, 0.540675, 0.156194],
    [1.000000, 0.549361, 0.151385],
    [1.000000, 0.558133, 0.147173],
    [1.000000, 0.566986, 0.143646],
    [1.000000, 0.575915, 0.140893],
    [0.999807, 0.584915, 0.139003],
    [0.998619, 0.593979, 0.138058],
    [0.997197, 0.603103, 0.138129],
    [0.995542, 0.612279, 0.139272],
    [0.993657, 0.621501, 0.141523],
    [0.991545, 0.630762, 0.144894],
    [0.989209, 0.640054, 0.149378],
    [0.986653, 0.649369, 0.154948],
    [0.983884, 0.658701, 0.161564],
    [0.980908, 0.668040, 0.169172],
    [0.977733, 0.677379, 0.177714],
    [0.974368, 0.686708, 0.187126],
    [0.970824, 0.696019, 0.197348],
    [0.967111, 0.705304, 0.208323],
    [0.963241, 0.714552, 0.219998],
    [0.959226, 0.723757, 0.232344],
    [0.955074, 0.732911, 0.245336],
    [0.950803, 0.742006, 0.258945],
    [0.946427, 0.751030, 0.273142],
    [0.941968, 0.759975, 0.287896],
    [0.937448, 0.768829, 0.303181],
    [0.932891, 0.777582, 0.318965],
    [0.928325, 0.786224, 0.335223],
    [0.923779, 0.794743, 0.351926],
    [0.919283, 0.803129, 0.369047],
    [0.914871, 0.811371, 0.386559],
    [0.910577, 0.819459, 0.404432],
    [0.906436, 0.827383, 0.422639],
    [0.902487, 0.835134, 0.441152],
    [0.898759, 0.842704, 0.459987],
    [0.895294, 0.850082, 0.479105],
    [0.892134, 0.857261, 0.498470],
    [0.889318, 0.864233, 0.518042],
    [0.886886, 0.870991, 0.537780],
    [0.884875, 0.877530, 0.557645],
    [0.883321, 0.883846, 0.577597],
    [0.882257, 0.889936, 0.597597],
    [0.881713, 0.895798, 0.617602],
    [0.881714, 0.901431, 0.637574],
    [0.882282, 0.906837, 0.657473],
    [0.883436, 0.912016, 0.677259],
    [0.885187, 0.916972, 0.696895],
    [0.887543, 0.921709, 0.716342],
    [0.890507, 0.926235, 0.735552],
    [0.894073, 0.930557, 0.754481],
    [0.898231, 0.934686, 0.773086],
    [0.902966, 0.938633, 0.791328],
    [0.908258, 0.942411, 0.809170],
    [0.914080, 0.946032, 0.826578],
    [0.920403, 0.949512, 0.843518],
    [0.927194, 0.952867, 0.859963],
    [0.934416, 0.956113, 0.875885],
    [0.942028, 0.959268, 0.891258],
    [0.949987, 0.962353, 0.906058],
    [0.958246, 0.965388, 0.920259],
    [0.966750, 0.968397, 0.933834],
    [0.975437, 0.971411, 0.946745],
    [0.984224, 0.974469, 0.958931],
    [0.992967, 0.977648, 0.970244],
    [1.000000, 0.981264, 0.979916],
]



auda_cm = ListedColormap(audaspec_data, name='AudaSpec')

y, sr = librosa.load("./sample/1.wav", sr=None)
plt.subplot(2, 1, 1)
librosa.display.waveplot(y, sr, x_axis='')
plt.ylim(ymin=-1, ymax=1)

D = librosa.amplitude_to_db(np.abs(librosa.stft(y, n_fft=512)), ref=np.max)
plt.subplot(2, 1, 2)
librosa.display.specshow(D, y_axis='linear', vmin=-80, vmax=0, cmap=auda_cm)
plt.show()

?

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-12 17:30:27  更:2022-03-12 17:34:31 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/9 15:59:35-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码