IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【PyTorch】深度学习实战之反向传播 -> 正文阅读

[人工智能]【PyTorch】深度学习实战之反向传播

PyTorch实现反向传播

  • 反向传播主要体现在l.backward(),调用该方法后w.grad由None更新为Tensor类型,且w.grad.data用于后序w.data的更新
  • l.backward()会把计算图中所有需要梯度的地方都会求出来,然后把梯度都存在对应待求的参数中,最终计算图被释放

实现代码:

import torch

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w = torch.tensor([1.0])
w.requires_grad = True


def forward(x):
    return x * w; # w是一个Tensor


def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2


print("predict (before training))", 4, forward(4).item())

for epoch in range(100):
    for x, y in zip(x_data, y_data):
        l = loss(x, y) # l是一个张量,tensor主要是建立在计算图,计算损失
        l.backward()
        print('\tgrad:', x, y, w.grad.item())
        w.data = w.data - 0.01 * w.grad.data # 权重更新时,注意grad也是一个Tensor
        w.grad.data.zero_() # 更新完之后要记得清零
    print("progress:", epoch, l.item())
print("predict (after training)", 4, forward(4).item())

训练结果如下:

predict (before training)) 4 4.0
	grad: 1.0 2.0 -2.0
	grad: 2.0 4.0 -7.840000152587891
	grad: 3.0 6.0 -16.228801727294922
progress: 0 7.315943717956543
	grad: 1.0 2.0 -1.478623867034912
	grad: 2.0 4.0 -5.796205520629883
	grad: 3.0 6.0 -11.998146057128906
progress: 1 3.9987640380859375
	grad: 1.0 2.0 -1.0931644439697266
	grad: 2.0 4.0 -4.285204887390137
	grad: 3.0 6.0 -8.870372772216797
progress: 2 2.1856532096862793
	grad: 1.0 2.0 -0.8081896305084229
	grad: 2.0 4.0 -3.1681032180786133
	grad: 3.0 6.0 -6.557973861694336
progress: 3 1.1946394443511963
	grad: 1.0 2.0 -0.5975041389465332
	grad: 2.0 4.0 -2.3422164916992188
	grad: 3.0 6.0 -4.848389625549316
progress: 4 0.6529689431190491
	grad: 1.0 2.0 -0.4417421817779541
	grad: 2.0 4.0 -1.7316293716430664
	grad: 3.0 6.0 -3.58447265625
progress: 5 0.35690122842788696
	grad: 1.0 2.0 -0.3265852928161621
	grad: 2.0 4.0 -1.2802143096923828
	grad: 3.0 6.0 -2.650045394897461
progress: 6 0.195076122879982
	grad: 1.0 2.0 -0.24144840240478516
	grad: 2.0 4.0 -0.9464778900146484
	grad: 3.0 6.0 -1.9592113494873047
progress: 7 0.10662525147199631
	grad: 1.0 2.0 -0.17850565910339355
	grad: 2.0 4.0 -0.699742317199707
	grad: 3.0 6.0 -1.4484672546386719
progress: 8 0.0582793727517128
	grad: 1.0 2.0 -0.1319713592529297
	grad: 2.0 4.0 -0.5173273086547852
	grad: 3.0 6.0 -1.070866584777832
progress: 9 0.03185431286692619
	grad: 1.0 2.0 -0.09756779670715332
	grad: 2.0 4.0 -0.3824653625488281
	grad: 3.0 6.0 -0.7917022705078125
progress: 10 0.017410902306437492
	grad: 1.0 2.0 -0.07213282585144043
	grad: 2.0 4.0 -0.2827606201171875
	grad: 3.0 6.0 -0.5853137969970703
progress: 11 0.009516451507806778
	grad: 1.0 2.0 -0.053328514099121094
	grad: 2.0 4.0 -0.2090473175048828
	grad: 3.0 6.0 -0.43272972106933594
progress: 12 0.005201528314501047
	grad: 1.0 2.0 -0.039426326751708984
	grad: 2.0 4.0 -0.15455150604248047
	grad: 3.0 6.0 -0.3199195861816406
progress: 13 0.0028430151287466288
	grad: 1.0 2.0 -0.029148340225219727
	grad: 2.0 4.0 -0.11426162719726562
	grad: 3.0 6.0 -0.23652076721191406
progress: 14 0.0015539465239271522
	grad: 1.0 2.0 -0.021549701690673828
	grad: 2.0 4.0 -0.08447456359863281
	grad: 3.0 6.0 -0.17486286163330078
progress: 15 0.0008493617060594261
	grad: 1.0 2.0 -0.01593184471130371
	grad: 2.0 4.0 -0.062453269958496094
	grad: 3.0 6.0 -0.12927818298339844
progress: 16 0.00046424579340964556
	grad: 1.0 2.0 -0.011778593063354492
	grad: 2.0 4.0 -0.046172142028808594
	grad: 3.0 6.0 -0.09557533264160156
progress: 17 0.0002537401160225272
	grad: 1.0 2.0 -0.00870823860168457
	grad: 2.0 4.0 -0.03413581848144531
	grad: 3.0 6.0 -0.07066154479980469
progress: 18 0.00013869594840798527
	grad: 1.0 2.0 -0.006437778472900391
	grad: 2.0 4.0 -0.025236129760742188
	grad: 3.0 6.0 -0.052239418029785156
progress: 19 7.580435340059921e-05
	grad: 1.0 2.0 -0.004759550094604492
	grad: 2.0 4.0 -0.018657684326171875
	grad: 3.0 6.0 -0.038620948791503906
progress: 20 4.143271507928148e-05
	grad: 1.0 2.0 -0.003518819808959961
	grad: 2.0 4.0 -0.0137939453125
	grad: 3.0 6.0 -0.028553009033203125
progress: 21 2.264650902361609e-05
	grad: 1.0 2.0 -0.00260162353515625
	grad: 2.0 4.0 -0.010198593139648438
	grad: 3.0 6.0 -0.021108627319335938
progress: 22 1.2377059647405986e-05
	grad: 1.0 2.0 -0.0019233226776123047
	grad: 2.0 4.0 -0.0075397491455078125
	grad: 3.0 6.0 -0.0156097412109375
progress: 23 6.768445018678904e-06
	grad: 1.0 2.0 -0.0014221668243408203
	grad: 2.0 4.0 -0.0055751800537109375
	grad: 3.0 6.0 -0.011541366577148438
progress: 24 3.7000872907810844e-06
	grad: 1.0 2.0 -0.0010514259338378906
	grad: 2.0 4.0 -0.0041217803955078125
	grad: 3.0 6.0 -0.008531570434570312
progress: 25 2.021880391112063e-06
	grad: 1.0 2.0 -0.0007772445678710938
	grad: 2.0 4.0 -0.0030469894409179688
	grad: 3.0 6.0 -0.006305694580078125
progress: 26 1.1044940038118511e-06
	grad: 1.0 2.0 -0.0005745887756347656
	grad: 2.0 4.0 -0.0022525787353515625
	grad: 3.0 6.0 -0.0046634674072265625
progress: 27 6.041091182851233e-07
	grad: 1.0 2.0 -0.0004248619079589844
	grad: 2.0 4.0 -0.0016651153564453125
	grad: 3.0 6.0 -0.003444671630859375
progress: 28 3.296045179013163e-07
	grad: 1.0 2.0 -0.0003139972686767578
	grad: 2.0 4.0 -0.0012311935424804688
	grad: 3.0 6.0 -0.0025491714477539062
progress: 29 1.805076408345485e-07
	grad: 1.0 2.0 -0.00023221969604492188
	grad: 2.0 4.0 -0.0009107589721679688
	grad: 3.0 6.0 -0.0018854141235351562
progress: 30 9.874406714516226e-08
	grad: 1.0 2.0 -0.00017189979553222656
	grad: 2.0 4.0 -0.0006742477416992188
	grad: 3.0 6.0 -0.00139617919921875
progress: 31 5.4147676564753056e-08
	grad: 1.0 2.0 -0.0001270771026611328
	grad: 2.0 4.0 -0.0004978179931640625
	grad: 3.0 6.0 -0.00102996826171875
progress: 32 2.9467628337442875e-08
	grad: 1.0 2.0 -9.393692016601562e-05
	grad: 2.0 4.0 -0.0003681182861328125
	grad: 3.0 6.0 -0.0007610321044921875
progress: 33 1.6088051779661328e-08
	grad: 1.0 2.0 -6.937980651855469e-05
	grad: 2.0 4.0 -0.00027179718017578125
	grad: 3.0 6.0 -0.000560760498046875
progress: 34 8.734787115827203e-09
	grad: 1.0 2.0 -5.125999450683594e-05
	grad: 2.0 4.0 -0.00020122528076171875
	grad: 3.0 6.0 -0.0004177093505859375
progress: 35 4.8466972657479346e-09
	grad: 1.0 2.0 -3.790855407714844e-05
	grad: 2.0 4.0 -0.000148773193359375
	grad: 3.0 6.0 -0.000308990478515625
progress: 36 2.6520865503698587e-09
	grad: 1.0 2.0 -2.8133392333984375e-05
	grad: 2.0 4.0 -0.000110626220703125
	grad: 3.0 6.0 -0.0002288818359375
progress: 37 1.4551915228366852e-09
	grad: 1.0 2.0 -2.09808349609375e-05
	grad: 2.0 4.0 -8.20159912109375e-05
	grad: 3.0 6.0 -0.00016880035400390625
progress: 38 7.914877642178908e-10
	grad: 1.0 2.0 -1.5497207641601562e-05
	grad: 2.0 4.0 -6.103515625e-05
	grad: 3.0 6.0 -0.000125885009765625
progress: 39 4.4019543565809727e-10
	grad: 1.0 2.0 -1.1444091796875e-05
	grad: 2.0 4.0 -4.482269287109375e-05
	grad: 3.0 6.0 -9.1552734375e-05
progress: 40 2.3283064365386963e-10
	grad: 1.0 2.0 -8.344650268554688e-06
	grad: 2.0 4.0 -3.24249267578125e-05
	grad: 3.0 6.0 -6.580352783203125e-05
progress: 41 1.2028067430946976e-10
	grad: 1.0 2.0 -5.9604644775390625e-06
	grad: 2.0 4.0 -2.288818359375e-05
	grad: 3.0 6.0 -4.57763671875e-05
progress: 42 5.820766091346741e-11
	grad: 1.0 2.0 -4.291534423828125e-06
	grad: 2.0 4.0 -1.71661376953125e-05
	grad: 3.0 6.0 -3.719329833984375e-05
progress: 43 3.842615114990622e-11
	grad: 1.0 2.0 -3.337860107421875e-06
	grad: 2.0 4.0 -1.33514404296875e-05
	grad: 3.0 6.0 -2.86102294921875e-05
progress: 44 2.2737367544323206e-11
	grad: 1.0 2.0 -2.6226043701171875e-06
	grad: 2.0 4.0 -1.049041748046875e-05
	grad: 3.0 6.0 -2.288818359375e-05
progress: 45 1.4551915228366852e-11
	grad: 1.0 2.0 -1.9073486328125e-06
	grad: 2.0 4.0 -7.62939453125e-06
	grad: 3.0 6.0 -1.430511474609375e-05
progress: 46 5.6843418860808015e-12
	grad: 1.0 2.0 -1.430511474609375e-06
	grad: 2.0 4.0 -5.7220458984375e-06
	grad: 3.0 6.0 -1.1444091796875e-05
progress: 47 3.637978807091713e-12
	grad: 1.0 2.0 -1.1920928955078125e-06
	grad: 2.0 4.0 -4.76837158203125e-06
	grad: 3.0 6.0 -1.1444091796875e-05
progress: 48 3.637978807091713e-12
	grad: 1.0 2.0 -9.5367431640625e-07
	grad: 2.0 4.0 -3.814697265625e-06
	grad: 3.0 6.0 -8.58306884765625e-06
progress: 49 2.0463630789890885e-12
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 50 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 51 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 52 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 53 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 54 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 55 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 56 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 57 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 58 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 59 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 60 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 61 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 62 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 63 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 64 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 65 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 66 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 67 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 68 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 69 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 70 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 71 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 72 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 73 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 74 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 75 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 76 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 77 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 78 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 79 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 80 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 81 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 82 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 83 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 84 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 85 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 86 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 87 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 88 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 89 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 90 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 91 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 92 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 93 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 94 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 95 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 96 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 97 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 98 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress: 99 9.094947017729282e-13
predict (after training) 4 7.999998569488525
如果没办法缓解对未来的焦虑,那就先做好眼前的事情吧。大雾的清晨是无法看清远方的,但至少脚下的每一步是清晰的。总会有大雾散开的时刻,在那之前,你不能囿于原地,一步都不走。 ???
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-15 22:31:54  更:2022-03-15 22:32:29 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/9 15:31:57-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码