IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> leastsq函数的使用 -> 正文阅读

[人工智能]leastsq函数的使用

在这里插入图片描述

leastsq作用:最小化一组方程的平方和。
参数设置:
func 误差函数
x0 初始化的参数
args 其他的额外参数

举个例子就清楚了
首先创建样本点

import numpy as np
import scipy as sp
from scipy.optimize import leastsq
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
x=[1,2,3,4]
y=[2,3,4,5]

拟合直线

def y_pre(p,x):
    f=np.poly1d(p)
    return f(x)

其中的np.polyld

f=np.poly1d([1,2,3])
 # x^2+2x+3
f(1)
"""
6
"""

误差函数

def error(p,x,y):
    return y-y_pre(p,x)

接下就简单了

p=[1,2]    # 值随便写
# y=w1*x+w2
res=leastsq(error,p,args=(x,y))
w1,w2=res[0]   # res[0]中就是wi的参数列表
"""
到这w1和w2就已经求出来了,下面是画图看一下
"""
x_=np.linspace(1,10,100)   # 等差数列,
y_p=w1*x_+w2               # 求出的拟合曲线
plt.scatter(x,y)           # 样本点
plt.plot(x_,y_p)           # 画拟合曲线

在这里插入图片描述
可以直接封装成函数

x=np.linspace(0,2,10)
y=np.sin(np.pi*x)
# 原始的样本
y_=[y + np.random.normal(0,0.1) for y in y]     # np.random.normal(loc,scale,size):正态分布的均值,正态分布的标准差,形状

# np.random.randn()   # 标准正态分布是以0为均数、以1为标准差的正态分布,记为N(0,1)

def fit(M=1):
    p=np.random.rand(M+1)   # 返回一个或一组服从“0~1”均匀分布的随机样本值。随机样本取值范围是[0,1)
    res=leastsq(error,p,args=(x,y))  # wi 的值
    x_point=np.linspace(0,2,100)  # 增加数据量为了画出的图平滑
    y_point=np.sin(np.pi*x_point) # 增加数据量为了画出的图平滑
    plt.plot(x_point,y_point,'r',label='原始')
    plt.plot(x_point,y_pre(res[0],x_point),'b',label='拟合')
    plt.scatter(x,y_)
    plt.legend()
fit(3)

在这里插入图片描述
你也可以输出一下中间的结果

x=np.linspace(0,2,10)
y=np.sin(np.pi*x)
# 原始的样本
y_=[y + np.random.normal(0,0.1) for y in y]     # np.random.normal(loc,scale,size):正态分布的均值,正态分布的标准差,形状

# np.random.randn()   # 标准正态分布是以0为均数、以1为标准差的正态分布,记为N(0,1)

def fit(M=1):
    p=np.random.rand(M+1)   # 返回一个或一组服从“0~1”均匀分布的随机样本值。随机样本取值范围是[0,1)
    res=leastsq(error,p,args=(x,y))  # wi 的值
    x_point=np.linspace(0,2,100)
    y_point=np.sin(np.pi*x_point)
    plt.plot(x_point,y_point,'r',label='原始')
    plt.plot(x_point,y_pre(res[0],x_point),'b',label='拟合')
    print(res[0])
    plt.scatter(x,y_)
    plt.legend()
fit(3)

在这里插入图片描述拟合的直线就是
y = w 1 ? x 3 + w 2 ? x 2 + w 3 ? x 1 + w 4 ? x 0 y=w_1*x^3+w_2*x^2+w3*x^1+w_4*x^0 y=w1??x3+w2??x2+w3?x1+w4??x0

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-16 22:21:38  更:2022-03-16 22:23:09 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/9 19:10:32-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码