IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 学习机器学习100天系列_Day02 -> 正文阅读

[人工智能]学习机器学习100天系列_Day02

简单线性回归:

目的:使用单一特征来预测响应值;

这是一种基于自变量值(x)来预测因变量(y)的方法,假设这两个变量是线性相关的,因此可以尝试寻找一种根据特征或者自变量(x)的线性函数来描述和预测(y)值

怎么找最佳拟合线:

在这个回归任务,我们将通过找到”最佳拟合线”来最小化预测误差—回归线误差最小,简单来说就缩小预测值(拟合值)与真实值(测量值)的差距。

步骤:

1、 数据预处理
上一篇文章的6个步骤;

2、 通过训练集来训练简单线性回归模型
使用sklearn.liner_model中的LinearRegression类
先实例化LinearRegression类再使用fit方法拟合训练集

3、 预测结果
使用fit出的模型返回的LinearRegression类中的predict类预测测试集的结果

4、 可视化
使用matplotlib.pyplot中的plot画出拟合线,使用scatter画出训练集的散点


#第一步数据预处理

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

DataSets = pd.read_csv('./datasets/studentscores.csv')
X = DataSets.iloc[:,:1].values
Y = DataSets.iloc[:,1].values

print(X)
print(Y)

from sklearn.impute import SimpleImputer

simp = SimpleImputer(missing_values=np.nan, strategy="mean")

simp.fit(X)
X = simp.fit_transform(X)

from sklearn.model_selection import train_test_split

X_trian, X_test, Y_trian, Y_test = train_test_split(X, Y, test_size=1/4, random_state= 0)

print(X_trian)
print(X_test)
print(Y_trian)
print(Y_test)

#第二步 训练集使用简单线性回归模型来训练

from sklearn.linear_model import LinearRegression

LinerReg= LinearRegression()

LinerReg.fit(X_trian,Y_trian)

#第三步 预测结果

Y_Pred = LinerReg.predict(X_test)
print("预测:")
print(Y_Pred)
print("增益")
print(LinerReg.coef_)
print("偏置")
print(LinerReg.intercept_)

#可视化
plt.scatter(X_trian, Y_trian,marker= 'p', color='green')
plt.plot(X_trian,LinerReg.predict(X_trian),color= 'blue')
plt.show()

plt.scatter(X_test, Y_test, color='red')
plt.plot(X_test, LinerReg.predict(X_test), color='blue')
plt.show()

结果图:

在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-16 22:21:38  更:2022-03-16 22:24:05 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 14:43:32-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码