IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> pytorch如何查看显存利用情况 -> 正文阅读

[人工智能]pytorch如何查看显存利用情况

最近搞LSTM优化,但是显存利用率不稳定,想看一下LSTM的显存占用情况,搜罗了一通,发现一个不错的开源工具,记录分享一下。

首先上项目地址:https://github.com/Oldpan/Pytorch-Memory-Utils

这里也有作者写的博客:https://oldpan.me/archives/pytorch-gpu-memory-usage-track

代码库就两个python文件modelsize_estimate.py?和?gpu_mem_track.py,需要先将这两个文件复制到自己的代码工程目录下

作者也给出了使用示例,如下:

import torch

from torchvision import models
from gpu_mem_track import MemTracker

device = torch.device('cuda:0')

gpu_tracker = MemTracker()         # define a GPU tracker

gpu_tracker.track()                     # run function between the code line where uses GPU
cnn = models.vgg19(pretrained=True).features.to(device).eval()
gpu_tracker.track()                     # run function between the code line where uses GPU

dummy_tensor_1 = torch.randn(30, 3, 512, 512).float().to(device)  # 30*3*512*512*4/1024/1024 = 90.00M
dummy_tensor_2 = torch.randn(40, 3, 512, 512).float().to(device)  # 40*3*512*512*4/1024/1024 = 120.00M
dummy_tensor_3 = torch.randn(60, 3, 512, 512).float().to(device)  # 60*3*512*512*4/1024/1024 = 180.00M

gpu_tracker.track()

dummy_tensor_4 = torch.randn(120, 3, 512, 512).float().to(device)  # 120*3*512*512*4/1024/1024 = 360.00M
dummy_tensor_5 = torch.randn(80, 3, 512, 512).float().to(device)  # 80*3*512*512*4/1024/1024 = 240.00M

gpu_tracker.track()

dummy_tensor_4 = dummy_tensor_4.cpu()
dummy_tensor_2 = dummy_tensor_2.cpu()
gpu_tracker.clear_cache() # or torch.cuda.empty_cache()

gpu_tracker.track()

使用也很简单,在你需要查看显存利用代码的上下添加gpu_tracker.track()即可

gpu_tracker.track()
cnn = models.vgg19(pretrained=True).to(device)  # 导入VGG19模型并且将数据转到显存中
gpu_tracker.track()

?然后可以发现程序运行过程中的显存变化(第一行是载入前的显存,最后一行是载入后的显存)

At __main__ <module>: line 13                        Total Used Memory:472.2  Mb

+ | 1 * Size:(128, 64, 3, 3)      | Memory: 0.2949 M | <class 'torch.nn.parameter.Parameter'>
+ | 1 * Size:(256, 128, 3, 3)     | Memory: 1.1796 M | <class 'torch.nn.parameter.Parameter'>
+ | 1 * Size:(64, 64, 3, 3)       | Memory: 0.1474 M | <class 'torch.nn.parameter.Parameter'>
+ | 2 * Size:(4096,)              | Memory: 0.0327 M | <class 'torch.nn.parameter.Parameter'>
+ | 1 * Size:(512, 256, 3, 3)     | Memory: 4.7185 M | <class 'torch.nn.parameter.Parameter'>
+ | 2 * Size:(128,)               | Memory: 0.0010 M | <class 'torch.nn.parameter.Parameter'>
+ | 1 * Size:(1000, 4096)         | Memory: 16.384 M | <class 'torch.nn.parameter.Parameter'>
+ | 6 * Size:(512,)               | Memory: 0.0122 M | <class 'torch.nn.parameter.Parameter'>
+ | 1 * Size:(64, 3, 3, 3)        | Memory: 0.0069 M | <class 'torch.nn.parameter.Parameter'>
+ | 1 * Size:(4096, 25088)        | Memory: 411.04 M | <class 'torch.nn.parameter.Parameter'>
+ | 1 * Size:(4096, 4096)         | Memory: 67.108 M | <class 'torch.nn.parameter.Parameter'>
+ | 5 * Size:(512, 512, 3, 3)     | Memory: 47.185 M | <class 'torch.nn.parameter.Parameter'>
+ | 2 * Size:(64,)                | Memory: 0.0005 M | <class 'torch.nn.parameter.Parameter'>
+ | 3 * Size:(256,)               | Memory: 0.0030 M | <class 'torch.nn.parameter.Parameter'>
+ | 1 * Size:(128, 128, 3, 3)     | Memory: 0.5898 M | <class 'torch.nn.parameter.Parameter'>
+ | 2 * Size:(256, 256, 3, 3)     | Memory: 4.7185 M | <class 'torch.nn.parameter.Parameter'>
+ | 1 * Size:(1000,)              | Memory: 0.004 M | <class 'torch.nn.parameter.Parameter'>

At __main__ <module>: line 15                        Total Used Memory:1387.5 Mb

1387.5 – 472.2 = 915.3 MB,即显存占用情况,熟悉vgg19 的同学应该看出来,vgg19所有层的权重加起来大概是548M,这里却用了915.3M,将上面打印的报告打印的Tensor-Memory也都加起来算下来也差不多551.8Mb,和原始模型大小比较一致,但是两次打印的差值为什么要大这么多呢?

作者分析了原因:Pytorch在开始运行程序时需要额外的显存开销,这种额外的显存开销与我们实际使用的模型权重显存大小无关

大概可以理解。

下面是我的时间,模型是双层LSTM:

打印信息如下:


At train-mul.py line 172: main                        Total Tensor Used Memory:0.0    Mb Total Allocated Memory:0.0    Mb

+ | 2 * Size:(180, 60)            | Memory: 0.0823 M | <class 'torch.nn.parameter.Parameter'> | torch.float32
+ | 1 * Size:(352504, 300)        | Memory: 403.40 M | <class 'torch.nn.parameter.Parameter'> | torch.float32
+ | 4 * Size:(240,)               | Memory: 0.0036 M | <class 'torch.nn.parameter.Parameter'> | torch.float32
+ | 4 * Size:(180,)               | Memory: 0.0027 M | <class 'torch.nn.parameter.Parameter'> | torch.float32
+ | 1 * Size:(11, 120)            | Memory: 0.0050 M | <class 'torch.nn.parameter.Parameter'> | torch.float32
+ | 2 * Size:(180, 160)           | Memory: 0.2197 M | <class 'torch.nn.parameter.Parameter'> | torch.float32
+ | 2 * Size:(1, 256)             | Memory: 0.0019 M | <class 'torch.nn.parameter.Parameter'> | torch.float32
+ | 2 * Size:(240, 80)            | Memory: 0.1464 M | <class 'torch.nn.parameter.Parameter'> | torch.float32
+ | 2 * Size:(256,)               | Memory: 0.0019 M | <class 'torch.nn.parameter.Parameter'> | torch.float32
+ | 1 * Size:(256, 160)           | Memory: 0.1562 M | <class 'torch.nn.parameter.Parameter'> | torch.float32
+ | 1 * Size:(11,)                | Memory: 4.1961 M | <class 'torch.nn.parameter.Parameter'> | torch.float32
+ | 2 * Size:(240, 300)           | Memory: 0.5493 M | <class 'torch.nn.parameter.Parameter'> | torch.float32
+ | 1 * Size:(256, 120)           | Memory: 0.1171 M | <class 'torch.nn.parameter.Parameter'> | torch.float32

At train-mul.py line 177: main                        Total Tensor Used Memory:404.7  Mb Total Allocated Memory:405.3  Mb

所有tensor相加大概是408.88M,如下:

?两次打印差值是405.3M-0M=405.3M

很奇怪,两次差值比tensor memory相加要低,按说要大一些才是,原因不明

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-16 22:21:38  更:2022-03-16 22:24:23 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 14:57:44-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码