| GCN源码
 1 - cora数据集GNN常用数据集之Cora数据集
 
 
 
 2 - 源码含义记录首先我们来整体看一下代码的组成
  截图中的这一大坨为命令行传递参数,含义参考命令行传递参数 argparse.ArgumentParser解析简单点说,就是想在不改动代码的情况下,使用命令行去改参数。
 
 
 2.1 加载数据集在代码中,加载数据集通过这个函数实现 
adj, features, labels, idx_train, idx_val, idx_test = load_data()
 可以看看load_data中的内容: def load_data(path="../data/cora/", dataset="cora"):
    """Load citation network dataset (cora only for now)"""
    print('Loading {} dataset...'.format(dataset))
    idx_features_labels = np.genfromtxt("{}{}.content".format(path, dataset),
                                        dtype=np.dtype(str))
    features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32)  
    labels = encode_onehot(idx_features_labels[:, -1])  
    
    idx = np.array(idx_features_labels[:, 0], dtype=np.int32)  
    idx_map = {j: i for i, j in enumerate(idx)}  
    edges_unordered = np.genfromtxt("{}{}.cites".format(path, dataset),
                                    dtype=np.int32)  
    edges = np.array(list(map(idx_map.get, edges_unordered.flatten())),
                     dtype=np.int32).reshape(edges_unordered.shape)  
    adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])),
                        shape=(labels.shape[0], labels.shape[0]),
                        dtype=np.float32)  
    
    adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
    features = normalize(features)
    adj = normalize(adj + sp.eye(adj.shape[0]))
    idx_train = range(140)
    idx_val = range(200, 500)
    idx_test = range(500, 1500)
    features = torch.FloatTensor(np.array(features.todense()))
    labels = torch.LongTensor(np.where(labels)[1])
    adj = sparse_mx_to_torch_sparse_tensor(adj)
    idx_train = torch.LongTensor(idx_train)
    idx_val = torch.LongTensor(idx_val)
    idx_test = torch.LongTensor(idx_test)
    return adj, features, labels, idx_train, idx_val, idx_test
 np.genfromtxt函数为numpy加载数据集,当然还有其它几种加载数据集的方式,例如pandas等等,详情见Python加载数据的5种不同方式(收藏)。
 
 2.1.1 加载节点数据首先是加载节点的数据,即.content。 通过断点+命令行调试,可以看到输出的idx_features_labels的结果
  因此我们想把
 中间节点的特征给取出来,即这一句 features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32)
 中间[1:-1]是从第二列到倒数第二列(因为python为左闭右开) 然后再取label,使用 labels = encode_onehot(idx_features_labels[:, -1])
 只取最后一列,并且采用one-hot编码。 分别看看上述两行代码的输出 解释一下特征的含义
 
  最后开始取节点的索引(index),即第一列,并且构建节点的索引字典。 idx = np.array(idx_features_labels[:, 0], dtype=np.int32)  
idx_map = {j: i for i, j in enumerate(idx)}  
 看看输出,字典就构建好啦
  
 
 2.1.2 加载边的数据节点的数据导入完了,我们再来导入边的数据  edges_unordered = np.genfromtxt("{}{}.cites".format(path, dataset), dtype=np.int32)  
  将之前的转换成字典编号后的边
 
  
 
 2.1.3 构造邻接矩阵adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])), 
                        shape=(labels.shape[0], labels.shape[0]),
                        dtype=np.float32)  
 看看邻接矩阵的大小和样子,因为有2708个节点,所以大小为(2708×2708)
  由于Cora数据集是一个有向图,而GCN本身使用的为无向图,其邻接矩阵是对称的,因此我们需要构造一个对称矩阵,如下:
 
    adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
 其中adj.T > adj的含义为,如果转置后为1,而原矩阵为0,则该位置为1Python将非对称邻接矩阵转变为对称邻接矩阵(有向图转无向图)
 2.1.4 归一化features = normalize(features)
    adj = normalize(adj + sp.eye(adj.shape[0]))
 我们可以看一下normalize函数 def normalize(mx):
    """Row-normalize sparse matrix"""
    rowsum = np.array(mx.sum(1))  
    r_inv = np.power(rowsum, -1).flatten()  
    r_inv[np.isinf(r_inv)] = 0.  
    r_mat_inv = sp.diags(r_inv)  
    mx = r_mat_inv.dot(mx)  
    return mx
 分别看看rowsum和r_inv的输出  然后我们在把r_inv中的无穷值变为0后,构造对角矩阵,可以看到结果
 
  
 
 特征矩阵归一化(非必须)做了上述这些后,我们对特征矩阵进行归一化 可以发现特征每一行加起来都是1,已经被归一化好了。
 
 
 邻接矩阵归一化(必须)再对邻接矩阵+单位阵进行归一化(必须操作)
  首先看起来邻接矩阵+单位阵的值:
 
  然后再进行归一化,这里用的是简便方法,和上面一样啦~
 
 
 2.1.5 加载数据集/数据格式转换    
    idx_train = range(140)
    idx_val = range(200, 500)
    idx_test = range(500, 1500)
    
    features = torch.FloatTensor(np.array(features.todense()))
    labels = torch.LongTensor(np.where(labels)[1])
    adj = sparse_mx_to_torch_sparse_tensor(adj)
    idx_train = torch.LongTensor(idx_train)
    idx_val = torch.LongTensor(idx_val)
 最后返回的格式
     return adj, features, labels, idx_train, idx_val, idx_test
 
 
 2.2 构造模型我们构造一个GCN模型和优化器 
model = GCN(nfeat=features.shape[1],
            nhid=args.hidden,
            nclass=labels.max().item() + 1,
            dropout=args.dropout)
optimizer = optim.Adam(model.parameters(),
                       lr=args.lr, weight_decay=args.weight_decay)
 当然想看看GCN长什么样啦~ class GCN(nn.Module):
    def __init__(self, nfeat, nhid, nclass, dropout):
        super(GCN, self).__init__()
        self.gc1 = GraphConvolution(nfeat, nhid)  
        self.gc2 = GraphConvolution(nhid, nclass)  
        self.dropout = dropout
    def forward(self, x, adj):
        x = F.relu(self.gc1(x, adj))
        x = F.dropout(x, self.dropout, training=self.training)
        x = self.gc2(x, adj)
        return F.log_softmax(x, dim=1)
 在初始化里,看到了GraphConvolution函数,自然想看看它是什么样子的 class GraphConvolution(Module):
    """
    Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
    """
    def __init__(self, in_features, out_features, bias=True):
        super(GraphConvolution, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = Parameter(torch.FloatTensor(in_features, out_features))  
        if bias:
            self.bias = Parameter(torch.FloatTensor(out_features))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()
    def reset_parameters(self):  
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.data.uniform_(-stdv, stdv)
        if self.bias is not None:
            self.bias.data.uniform_(-stdv, stdv)
    def forward(self, input, adj):
        support = torch.mm(input, self.weight)  
        output = torch.spmm(adj, support)  
        if self.bias is not None:
            return output + self.bias
        else:
            return output
    def __repr__(self):
        return self.__class__.__name__ + ' (' \
               + str(self.in_features) + ' -> ' \
               + str(self.out_features) + ')'
 这里的forward函数就是矩阵的相乘
  2.3 使用GPUif args.cuda:
    model.cuda()
    features = features.cuda()
    adj = adj.cuda()
    labels = labels.cuda()
    idx_train = idx_train.cuda()
    idx_val = idx_val.cuda()
    idx_test = idx_test.cuda()
 
 2.4 定义训练和测试函数def train(epoch):
    t = time.time()
    model.train()
    optimizer.zero_grad()
    output = model(features, adj)
    loss_train = F.nll_loss(output[idx_train], labels[idx_train])
    acc_train = accuracy(output[idx_train], labels[idx_train])
    loss_train.backward()
    optimizer.step()
    if not args.fastmode:
        
        
        model.eval()
        output = model(features, adj)
    loss_val = F.nll_loss(output[idx_val], labels[idx_val])
    acc_val = accuracy(output[idx_val], labels[idx_val])
    print('Epoch: {:04d}'.format(epoch+1),
          'loss_train: {:.4f}'.format(loss_train.item()),
          'acc_train: {:.4f}'.format(acc_train.item()),
          'loss_val: {:.4f}'.format(loss_val.item()),
          'acc_val: {:.4f}'.format(acc_val.item()),
          'time: {:.4f}s'.format(time.time() - t))
def test():
    model.eval()
    output = model(features, adj)
    loss_test = F.nll_loss(output[idx_test], labels[idx_test])
    acc_test = accuracy(output[idx_test], labels[idx_test])
    print("Test set results:",
          "loss= {:.4f}".format(loss_test.item()),
          "accuracy= {:.4f}".format(acc_test.item()))
 2.5 模型训练和测试
t_total = time.time()
for epoch in range(args.epochs):
    train(epoch)
print("Optimization Finished!")
print("Total time elapsed: {:.4f}s".format(time.time() - t_total))
test()
 首先我们看一下模型第一层输出的size
  经过一个dropout,再经过第二层gcn,此时的input已经是
 
  第二层要学习的权重,维度为
 
  学完之后,x变为
 
  最后经过一个log_softmax,得到output
 
  训练完之后计算loss,然后计算准确度(不是很重要)
 def accuracy(output, labels):
    preds = output.max(1)[1].type_as(labels)  
    correct = preds.eq(labels).double()
    correct = correct.sum()
    return correct / len(labels)
 训练完了再测试,就大功告成啦 |