LSTM时序数据预测实践(实时股票数据)
? 预测结果展示(以红线分割,红线前数据参与训练,红线后数据未参与训练):
? 红线以后可以看到随着预测时间段的加长,预测误差会越来越大。
-
获取最新股票数据 import pandas_datareader.data as web
import datetime
from collections import deque
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.nn import MSELoss
from torch.optim import Adam,SGD,RMSprop
from torch.utils.data import DataLoader,Dataset
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
start = datetime.datetime(year=2000,month=1,day=1)
end = datetime.datetime(year=2022,month=3,day=16)
df = web.DataReader(name='^DJI',data_source='stooq',start=start,end=end)
df.sort_index(inplace=True)
df.dropna(inplace=True)
shift_size = -1
df['label'] = df['Close'].shift(periods=shift_size)
df.set_index(keys='Date',inplace=True)
df
'''
Open High Low Close Volume label(下-日收盘价)
Date
2000-01-03 11501.80 11522.00 11305.70 11357.50 169680388 10997.90
2000-01-04 11349.80 11350.10 10986.50 10997.90 178357418 11122.70
2000-01-05 10989.40 11215.10 10938.70 11122.70 203266571 11253.30
2000-01-06 11113.40 11313.50 11098.50 11253.30 176642517 11522.60
2000-01-07 11247.10 11528.10 11239.90 11522.60 184926808 11572.20
... ... ... ... ... ... ...
2022-03-09 32860.42 33457.28 32860.42 33286.25 507633430 33174.07
2022-03-10 33106.77 33236.59 32819.76 33174.07 462887778 32944.19
2022-03-11 33279.72 33515.61 32911.89 32944.19 432875928 32945.24
2022-03-14 33000.37 33395.59 32818.16 32945.24 475399572 33544.34
2022-03-15 32989.27 33620.84 32989.27 33544.34 466174065
'''
-
数据拆分
X = df.loc[df['label'].notnull(),df.columns[:-1]]
Y = df.loc[df['label'].notnull(),df.columns[-1]]
X_scaler = MinMaxScaler()
Y_scaler = MinMaxScaler()
X = X_scaler.fit_transform(X)
Y = Y_scaler.fit_transform(np.array(Y).reshape(-1,1))
train_x,test_x,train_y,test_y = train_test_split(X,Y,test_size=0.1,shuffle=False)
-
构建时序数据加载器 class MY_Dataset(Dataset):
def __init__(self,data,label,seq_len):
self.data = data
self.label = label
self.seq_len = seq_len
self.len_ = data.shape[0]-seq_len
def __getitem__(self,index):
return torch.tensor(self.data[index:index+self.seq_len],dtype=torch.float32),torch.tensor(self.label[index:index+self.seq_len],dtype=torch.float32)
def __len__(self):
return self.len_
seq_len = 14
data_train = MY_Dataset(data=train_x,label=train_y,seq_len=seq_len)
batch_size = 10
dataloader = DataLoader(dataset=data_train,batch_size=batch_size,shuffle=True,drop_last=True)
-
模型创建
class Lstm(nn.Module):
def __init__(self,feature_size,hidden_size,num_layers):
super(Lstm,self).__init__()
self.lstm = nn.LSTM(input_size=feature_size,hidden_size=hidden_size,num_layers=num_layers,batch_first=True,dropout=0.02)
self.linear = nn.Linear(in_features=hidden_size,out_features=1)
def forward(self,x,h0,c0):
out,(hn,cn)= self.lstm(x,(h0,c0))
z = self.linear(out)
return z,(hn,cn)
-
创建损失函数和优化器
feature_size = 5
hidden_size = 100
num_layers = 2
lstm = Lstm(feature_size=feature_size,hidden_size=hidden_size,num_layers=num_layers)
for i in lstm.parameters():
if i.dim()>=2:
nn.init.xavier_normal_(i)
Loss = MSELoss()
opt = Adam(params=lstm.parameters(),lr=0.01)
-
训练
epochs = 50
h0 = torch.zeros(size=(num_layers,batch_size,hidden_size))
c0 = torch.zeros(size=(num_layers,batch_size,hidden_size))
res = []
for epoch in range(epochs):
for x,y in dataloader:
out,(hn,cn)= lstm(x,h0,c0)
loss_value = Loss(out,y)
opt.zero_grad()
loss_value.backward()
opt.step()
print(loss_value)
res.append(loss_value)
-
模型预测
pred_y = []
h0 = torch.zeros(size=(num_layers,1,hidden_size))
c0 = torch.zeros(size=(num_layers,1,hidden_size))
for i in X:
out,(hn,cn) = lstm(torch.tensor(i,dtype=torch.float32).view(1,1,len(i)),h0,c0)
h0,c0 = hn.detach(),cn.detach()
pred_y.append(out.detach().flatten().item())
-
结果展示 8/2分进行train和test,训练结果如下: 全部train,预测下一日收盘价:(写这篇文章2022-3-15,预测3-16日股票收盘价) 2022-3-16:将预测结果与真实结果对比: 真实值与预测值之间有差异,但趋势对上了。
Date 预测值 真实值
2022-03-10 33303.748047 33174.07
2022-03-11 33237.870103 32944.19
2022-03-14 33265.761931 32945.24
2022-03-15 33353.923764 33544.34
2022-03-16 33751.452632 34063.10
|