IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> pytorch模型搭建 -> 正文阅读

[人工智能]pytorch模型搭建


前言

Module 类是 torch.nn 模块里提供的一个模型构造类 (nn.Module),是所有神经?网络模块的基类,我们可以继承它来定义我们想要的模型;
PyTorch模型定义应包括两个主要部分:各个部分的初始化(init);数据流向定义(forward)
基于nn.Module,我们可以通过Sequential,ModuleList和ModuleDict三种方式定义PyTorch模型。


Sequential

当模型的前向计算为简单串联各个层的计算时, Sequential 类可以通过更加简单的方式定义模型。它可以接收一个子模块的有序字典(OrderedDict) 或者一系列子模块作为参数来逐一添加 Module 的实例,?模型的前向计算就是将这些实例按添加的顺序逐?计算。Sequential已经实现了内部的 forward 函数,而且里面的模块必须是按照顺序进行排列的,所以我们必须确保前一个模块的输出大小和下一个模块的输入大小是一致的。

# Example of using Sequential
model1 = nn.Sequential(
          nn.Conv2d(1,20,5),
          nn.ReLU(),
          nn.Conv2d(20,64,5),
          nn.ReLU()
        )
print(model1)
# Sequential(
#   (0): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
#   (1): ReLU()
#   (2): Conv2d(20, 64, kernel_size=(5, 5), stride=(1, 1))
#   (3): ReLU()
# )

# Example of using Sequential with OrderedDict
import collections
model2 = nn.Sequential(collections.OrderedDict([
          ('conv1', nn.Conv2d(1,20,5)),
          ('relu1', nn.ReLU()),
          ('conv2', nn.Conv2d(20,64,5)),
          ('relu2', nn.ReLU())
        ]))
print(model2)
# Sequential(
#   (conv1): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
#   (relu1): ReLU()
#   (conv2): Conv2d(20, 64, kernel_size=(5, 5), stride=(1, 1))
#   (relu2): ReLU()
# )

使用Sequential定义模型的好处在于简单、易读,同时使用Sequential定义的模型不需要再写forward,因为顺序已经定义好了。但使用Sequential也会使得模型定义丧失灵活性,比如需要在模型中间加入一个外部输入时就不适合用Sequential的方式实现。使用时需根据实际需求加以选择。一般情况下 nn.Sequential 的用法是来组成卷积块 (block),然后像拼积木一样把不同的 block 拼成整个网络,让代码更简洁,更加结构化。

ModuleList

ModuleList 接收一个子模块(或层,需属于nn.Module类)的列表作为输入,然后也可以类似List那样进行append和extend操作。同时,子模块或层的权重也会自动添加到网络中来。它是一个储存不同 module,并自动将每个 module 的 parameters 添加到网络之中的容器。

class net3(nn.Module):
    def __init__(self):
        super(net3, self).__init__()
        self.linears = nn.ModuleList([nn.Linear(10,20), nn.Linear(20,30), nn.Linear(5,10)])
    def forward(self, x):
        x = self.linears[2](x)
        x = self.linears[0](x)
        x = self.linears[1](x) 
        return x

net = net3()
print(net)
# net3(
#   (linears): ModuleList(
#     (0): Linear(in_features=10, out_features=20, bias=True)
#     (1): Linear(in_features=20, out_features=30, bias=True)
#     (2): Linear(in_features=5, out_features=10, bias=True)
#   )
# )

nn.ModuleList 并没有定义一个网络,它只是将不同的模块储存在一起,这些模块之间并没有什么先后顺序可言

ModuleDict

ModuleDict和ModuleList的作用类似,只是ModuleDict能够更方便地为神经网络的层添加名称。


  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-17 22:08:21  更:2022-03-17 22:09:52 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/9 15:05:09-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码