IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 计算机视觉----实验1 -> 正文阅读

[人工智能]计算机视觉----实验1

1、直方图

图像直方图是用一表示数字图像中亮度分布的直方图,标绘了图像中每个亮度值的像素数。可以借助观察该直方图了解需要如何调整亮度分布的直方图。这种直方图中,横坐标的左侧为纯黑、较暗的区域,而右侧为较亮、纯白的区域。因此,一张较暗图片的图像直方图中的数据多集中于左侧和中间部分,而整体明亮、只有少量阴影的图像则相反。计算机视觉邻域常借助图像直方图来实现图像的二值化。

基本性质:
直方图没有位置信息。
直方图反映了总体灰度分布。
直方图具有可叠加性。
直方图具有统计性。

代码:

def Rgb2gray(image):
    h = image.shape[0]
    w = image.shape[1]
    grayimage  = np.zeros((h,w),np.uint8)
    for i in tqdm(range(h)):
        for j in range(w):
            grayimage [i,j] = 0.144*image[i,j,0]+0.587*image[i,j,1]+0.299*image[i,j,1]
    return grayimage
# 读取图像到数组中,并灰度化
image = cv2.imread("test.jpg")

im = array(Image.open('test.jpg').convert('L'))
# 直方图图像
# flatten可将二维数组转化为一维
hist(image.flatten(), 128)
# 显示
show()

实验结果:
在这里插入图片描述

2、高斯滤波

原理:
高斯滤波和均值滤波一样,都是利用一个掩膜和图像进行卷积求解。不同之处在于:均值滤波器的模板系数都是相同的为1,而高斯滤波器的模板系数,则随着距离模板中心的增大而系数减小(服从二维高斯分布)。所以,高斯滤波器相比于均值滤波器对图像个模糊程度较小,更能够保持图像的整体细节。

步骤
(1)移动相关核的中心元素,使它位于输入图像待处理像素的正上方
(2)将输入图像的像素值作为权重,乘以相关核
(3)将上面各步得到的结果相加做为输出

代码:

def GaussianBlur1(img):
    #(3, 3)表示高斯滤波器的长和宽都为5,3表示滤波器的标准差
    out=cv2.GaussianBlur(img,(5,5),3)
    cv2.imshow('out.jpg',out)

结果:

在这里插入图片描述

3、均衡化

如果一副图像的像素占有很多的灰度级而且分布均匀,那么这样的图像往往有高对比度和多变的灰度色调。直方图均衡化就是一种能仅靠输入图像直方图信息自动达到这种效果的变换函数。
它的基本思想是对图像中像素个数多的灰度级进行展宽,而对图像中像素个数少的灰度进行压缩,从而扩展像元取值的动态范围,提高了对比度和灰度色调的变化,使图像更加清晰。

代码:

def equalizeHist1(img):
# 直方图均衡化,调用cv2.equalizeHist 函数实心
    (b,g,r) = cv2.split(img)
    bH = cv2.equalizeHist(b)
    gH = cv2.equalizeHist(g)
    rH = cv2.equalizeHist(r)
    result_img = cv2.merge((bH,gH,rH))
# 显示原始图像
    #cv2.imshow('src_img', src_img)  
# 显示均衡化后的图像
    cv2.imshow('result_img', result_img)   

结果:
在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-17 22:08:21  更:2022-03-17 22:09:56 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 14:58:44-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码