IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 问答模型(五)——模型构建 -> 正文阅读

[人工智能]问答模型(五)——模型构建

阅读理解本质是一个答案抽取任务,PaddleNLP对于各种预训练模型已经内置了对于下游任务-答案抽取的Fine-tune网络。

以下项目以BERT为例,介绍如何将预训练模型Fine-tune完成答案抽取任务。

答案抽取任务的本质就是根据输入的问题和文章,预测答案在文章中的起始位置和结束位置。基于BERT的答案抽取原理如下图所示:
在这里插入图片描述

# 设置想要使用模型的名称
model = ppnlp.transformers.BertForQuestionAnswering.from_pretrained(MODEL_NAME)

模型配置

设置Fine-Tune优化策略

适用于ERNIE/BERT这类Transformer模型的学习率为warmup的动态学习率。
在这里插入图片描述

# 训练过程中的最大学习率
learning_rate = 3e-5 
# 训练轮次
epochs = 1
# 学习率预热比例
warmup_proportion = 0.1
# 权重衰减系数,类似模型正则项策略,避免模型过拟合
weight_decay = 0.01


num_training_steps = len(train_data_loader) * epochs
lr_scheduler = ppnlp.transformers.LinearDecayWithWarmup(learning_rate, num_training_steps, warmup_proportion)

# Generate parameter names needed to perform weight decay.
# All bias and LayerNorm parameters are excluded.
decay_params = [
    p.name for n, p in model.named_parameters()
    if not any(nd in n for nd in ["bias", "norm"])
]
optimizer = paddle.optimizer.AdamW(
    learning_rate=lr_scheduler,
    parameters=model.parameters(),
    weight_decay=weight_decay,
    apply_decay_param_fun=lambda x: x in decay_params)

设计loss function

由于BertForQuestionAnswering模型对将BertModel的sequence_output拆开成start_logits和end_logits进行输出,所以阅读理解任务的loss也由start_loss和end_loss组成,我们需要自己定义loss function。对于答案其实位置和结束位置的预测可以分别成两个分类任务。所以设计的loss function如下:

class CrossEntropyLossForSQuAD(paddle.nn.Layer):
    def __init__(self):
        super(CrossEntropyLossForSQuAD, self).__init__()

    def forward(self, y, label):
        start_logits, end_logits = y   # both shape are [batch_size, seq_len]
        start_position, end_position = label
        start_position = paddle.unsqueeze(start_position, axis=-1)
        end_position = paddle.unsqueeze(end_position, axis=-1)
        start_loss = paddle.nn.functional.softmax_with_cross_entropy(
            logits=start_logits, label=start_position, soft_label=False)
        start_loss = paddle.mean(start_loss)
        end_loss = paddle.nn.functional.softmax_with_cross_entropy(
            logits=end_logits, label=end_position, soft_label=False)
        end_loss = paddle.mean(end_loss)

        loss = (start_loss + end_loss) / 2
        return loss

这一部分未对参考模型进行修改
参考链接AI Studio----基于bert的模型的机器阅读理解

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-17 22:08:21  更:2022-03-17 22:10:32 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 14:39:49-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码