IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> han_attention(双向GRU+attention)(imdb数据集---文档分类) -> 正文阅读

[人工智能]han_attention(双向GRU+attention)(imdb数据集---文档分类)


han_attention(双向GRU+attention)

在这里插入图片描述

词编码:
在这里插入图片描述
词级别的注意力机制:
在这里插入图片描述
句子编码:
在这里插入图片描述
句子级别的注意力机制:
在这里插入图片描述

一、文件目录

在这里插入图片描述

二、语料集

数据集: http://ir.hit.edu.cn/~dytang/paper/emnlp2015/emnlp-2015-data.7z

三、数据处理(IMDB_Data_Loader.py)

1.数据集加载(排序,分句)
2.读取标签和数据
3.创建word2id(源语言和目标语言)
???3.1统计词频
???3.2加入 pad:0,unk:1创建word2id
4.将数据转化成id(源语言和目标语言)
5.添加目标数据的输入(target_data_input)

from gensim.models import KeyedVectors
from torch.utils import data
import os
import torch
import numpy as np
class IMDB_Data(data.DataLoader):
    def __init__(self,data_name,min_count,word2id=None,max_sentence_length=100,batch_size=64,is_pretrain=True):
        self.path = os.path.abspath(".")
        if "data" not in self.path:
            self.path += "/data"
        self.data_name = "/imdb/"+data_name
        self.min_count = min_count
        self.word2id = word2id
        self.max_sentence_length = max_sentence_length
        self.batch_size =batch_size
        self.datas,self.labels = self.load_data()
        if is_pretrain:
            self.get_word2vec()
        else:
            self.weight = None
        for i in range(len(self.datas)):
            self.datas[i] = np.array(self.datas[i])

    # 数据集加载
    def load_data(self):
        datas = open(self.path+self.data_name,encoding="utf-8").read().splitlines()
        datas = [data.split("		")[-1].split() + [data.split("		")[2]] for data in datas]  # 取出数据并分词+标签
        # 根据长度排序
        datas = sorted(datas, key=lambda x: len(x), reverse=True)
        labels = [int(data[-1]) - 1 for data in datas]
        datas = [data[0:-1] for data in datas]
        if self.word2id == None:
            self.get_word2id(datas)
        # 分句
        for i, data in enumerate(datas):
            datas[i] = " ".join(data).split("<sssss>")
            for j, sentence in enumerate(datas[i]):
                datas[i][j] = sentence.split()
        datas = self.convert_data2id(datas)
        return datas,labels
        

    # word2id
    def get_word2id(self, datas):
        word_freq = {}
        for data in datas:
            for word in data:
                word_freq[word] = word_freq.get(word, 0) + 1
        word2id = {"<pad>": 0, "<unk>": 1}
        for word in word_freq:
            if word_freq[word] < self.min_count:
                continue
            else:
                word2id[word] = len(word2id)
        self.word2id = word2id

    # 将数据转化为id,句子必须一样的长度,每个文档的句子一样多
    def convert_data2id(self, datas):
        for i, document in enumerate(datas):
            if i % 10000 == 0:
                print(i, len(datas))
            for j, sentence in enumerate(document):
                for k, word in enumerate(sentence):
                    datas[i][j][k] = self.word2id.get(word,self.word2id["<unk>"])
                datas[i][j] = datas[i][j][0:self.max_sentence_length] + \
                              [self.word2id["<pad>"]] * (self.max_sentence_length - len(datas[i][j]))
        for i in range(0, len(datas), self.batch_size):
            max_data_length = max([len(x) for x in datas[i:i + self.batch_size]])
            for j in range(i, min(i + self.batch_size, len(datas))):
                datas[j] = datas[j] + [[self.word2id["<pad>"]] * self.max_sentence_length] * (max_data_length - len(datas[j]))
        return datas

    def get_word2vec(self):
        print("Reading word2vec Embedding...")
        wvmodel = KeyedVectors.load_word2vec_format(self.path + "/imdb.model", binary=True)
        tmp = []
        for word, index in self.word2id.items():
            try:
                tmp.append(wvmodel.get_vector(word))
            except:
                pass
        mean = np.mean(np.array(tmp))
        std = np.std(np.array(tmp))
        print(mean, std)
        vocab_size = len(self.word2id)
        embed_size = 200
        np.random.seed(2)
        embedding_weights = np.random.normal(mean, std, [vocab_size, embed_size])  # 正太分布初始化方法
        for word, index in self.word2id.items():
            try:
                embedding_weights[index, :] = wvmodel.get_vector(word)
            except:
                pass
        self.weight = torch.from_numpy(embedding_weights).float()

    def __getitem__(self, idx):
        return self.datas[idx], self.labels[idx]

    def __len__(self):
        return len(self.labels)
if __name__=="__main__":
    imdb_data = IMDB_Data(data_name="imdb-train.txt.ss",min_count=5,is_pretrain=True)
    training_iter = torch.utils.data.DataLoader(dataset=imdb_data,
                                                batch_size=64,
                                                shuffle=False,
                                                num_workers=0)
    for data, label in training_iter:
        print (np.array(data).shape)

四、模型(HAN_Model.py)

import torch
import torch.nn as nn
import numpy as np
from torch.nn import functional as F
from torch.autograd import Variable
class HAN_Model(nn.Module):
    def __init__(self,vocab_size,embedding_size,gru_size,class_num,is_pretrain=False,weights=None):
        super(HAN_Model, self).__init__()
        if is_pretrain:
            self.embedding = nn.Embedding.from_pretrained(weights, freeze=False)
        else:
            self.embedding = nn.Embedding(vocab_size, embedding_size)
        self.word_gru = nn.GRU(input_size=embedding_size,hidden_size=gru_size,num_layers=1,
                               bidirectional=True,batch_first=True)
        #自己设的query Uw
        self.word_context = nn.Parameter(torch.Tensor(2*gru_size, 1),requires_grad=True)#将一个固定不可训练的tensor转换成可以训练的类型parameter
        self.word_dense = nn.Linear(2*gru_size,2*gru_size)

        self.sentence_gru = nn.GRU(input_size=2*gru_size,hidden_size=gru_size,num_layers=1,
                               bidirectional=True,batch_first=True)
        # 自己设的query Us
        self.sentence_context = nn.Parameter(torch.Tensor(2*gru_size, 1),requires_grad=True)
        self.sentence_dense = nn.Linear(2*gru_size,2*gru_size)
        self.fc = nn.Linear(2*gru_size,class_num)
    def forward(self, x,gpu=False):
        sentence_num = x.shape[1]
        sentence_length = x.shape[2]
        x = x.view([-1,sentence_length]) # x: bs*sentence_num*sentence_length -> (bs*sentence_num)*sentence_length 转成二维
        x_embedding = self.embedding(x) # (bs*sentence_num)*sentence_length*embedding_size
        word_outputs, word_hidden = self.word_gru(x_embedding) # word_outputs.shape: (bs*sentence_num)*sentence_length*2gru_size
        word_outputs_attention = torch.tanh(self.word_dense(word_outputs)) # (bs*sentence_num)*sentence_length*2gru_size
        weights = torch.matmul(word_outputs_attention,self.word_context) # (bs*sentence_num)*sentence_length*1
        weights = F.softmax(weights,dim=1) # (bs*sentence_num)*sentence_length*1
        x = x.unsqueeze(2) # (bs*sentence_num)*sentence_length*1 加维度
        # 权值矩阵:有值的地方保留,pad部分设为0
        if gpu:
            weights = torch.where(x!=0,weights,torch.full_like(x,0,dtype=torch.float).cuda())
        else:
            weights = torch.where(x != 0, weights, torch.full_like(x, 0, dtype=torch.float)) # (bs*sentence_num)*sentence_length*1
        # 和恢复为1
        weights = weights/(torch.sum(weights,dim=1).unsqueeze(1)+1e-4) # (bs*sentence_num)*sentence_length*1

        sentence_vector = torch.sum(word_outputs*weights,dim=1).view([-1,sentence_num,word_outputs.shape[-1]]) #bs*sentence_num*2gru_size
        sentence_outputs, sentence_hidden = self.sentence_gru(sentence_vector)# sentence_outputs.shape: bs*sentence_num*2gru_size
        attention_sentence_outputs = torch.tanh(self.sentence_dense(sentence_outputs)) # sentence_outputs.shape: bs*sentence_num*2gru_size
        weights = torch.matmul(attention_sentence_outputs,self.sentence_context) # sentence_outputs.shape: bs*sentence_num*1
        weights = F.softmax(weights,dim=1) # sentence_outputs.shape: bs*sentence_num*1
        x = x.view(-1, sentence_num, x.shape[1]) # bs*sentence_num*sentence_length
        x = torch.sum(x, dim=2).unsqueeze(2) # bs*sentence_num*1
        if gpu:
            weights = torch.where(x!=0,weights,torch.full_like(x,0,dtype=torch.float).cuda())
        else:
            weights = torch.where(x != 0, weights, torch.full_like(x, 0, dtype=torch.float)) #  bs*sentence_num*1
        weights = weights / (torch.sum(weights,dim=1).unsqueeze(1)+1e-4) # bs*sentence_num*1
        document_vector = torch.sum(sentence_outputs*weights,dim=1)# bs*2gru_size
        output = self.fc(document_vector) #bs*class_num
        return output
han_model = HAN_Model(vocab_size=30000,embedding_size=200,gru_size=50,class_num=4)
x = torch.Tensor(np.zeros([64,50,100])).long()
x[0][0][0:10] = 1
output = han_model(x)
print (output.shape)

五、训练和测试

import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim
from model import HAN_Model
from data import IMDB_Data
import numpy as np
from tqdm import tqdm
import config as argumentparser
config = argumentparser.ArgumentParser()
torch.manual_seed(config.seed)
if config.cuda and torch.cuda.is_available():  # 是否使用gpu
    torch.cuda.set_device(config.gpu)

def get_test_result(data_iter,data_set):
    # 生成测试结果
    model.eval()
    true_sample_num = 0
    for data, label in data_iter:
        if config.cuda and torch.cuda.is_available():
            data = data.cuda()
            label = label.cuda()
        else:
            data = torch.autograd.Variable(data).long()
        if config.cuda and torch.cuda.is_available():
            out = model(data, gpu=True)
        else:
            out = model(data)
        true_sample_num += np.sum((torch.argmax(out, 1) == label).cpu().numpy())
    acc = true_sample_num / data_set.__len__()
    return acc
# 导入训练集
training_set = IMDB_Data("imdb-train.txt.ss",min_count=config.min_count,
                         max_sentence_length = config.max_sentence_length,batch_size=config.batch_size,is_pretrain=True)
training_iter = torch.utils.data.DataLoader(dataset=training_set,
                                            batch_size=config.batch_size,
                                            shuffle=False,
                                            num_workers=0)
# 导入测试集
test_set = IMDB_Data("imdb-test.txt.ss",min_count=config.min_count,word2id=training_set.word2id,
                         max_sentence_length = config.max_sentence_length,batch_size=config.batch_size)
test_iter = torch.utils.data.DataLoader(dataset=test_set,
                                        batch_size=config.batch_size,
                                        shuffle=False,
                                        num_workers=0)
if config.cuda and torch.cuda.is_available():
    training_set.weight = training_set.weight.cuda()
model = HAN_Model(vocab_size=len(training_set.word2id),
                  embedding_size=config.embedding_size,
                  gru_size = config.gru_size,class_num=config.class_num,weights=training_set.weight,is_pretrain=False)

if config.cuda and torch.cuda.is_available(): # 如果使用gpu,将模型送进gpu
    model.cuda()

criterion = nn.CrossEntropyLoss() # 这里会做softmax
optimizer = optim.Adam(model.parameters(), lr=config.learning_rate)
loss = -1

for epoch in range(config.epoch):
    model.train()
    process_bar = tqdm(training_iter)
    for data, label in process_bar:
        if config.cuda and torch.cuda.is_available():
            data = data.cuda()
            label = label.cuda()
        else:
            data = torch.autograd.Variable(data).long()
        label = torch.autograd.Variable(label).squeeze()
        if config.cuda and torch.cuda.is_available():
            out = model(data,gpu=True)
        else:
            out = model(data)
        loss_now = criterion(out, autograd.Variable(label.long()))
        if loss == -1:
            loss = loss_now.data.item()
        else:
            loss = 0.95*loss+0.05*loss_now.data.item()
        process_bar.set_postfix(loss=loss_now.data.item())
        process_bar.update()
        optimizer.zero_grad()
        loss_now.backward()
        optimizer.step()
    test_acc = get_test_result(test_iter, test_set)
    print("The test acc is: %.5f" % test_acc)

实验结果

生成测试集和验证集的blue值(翻译的评价指标),将测试集的原始数据和翻译数据都存入文件。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-21 20:50:48  更:2022-03-21 20:51:14 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/9 1:22:30-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码