IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 第四章、sklearn中的降维算法PCA和SVD -> 正文阅读

[人工智能]第四章、sklearn中的降维算法PCA和SVD

1 概述

1.1 从什么叫“维度”说开来

在这里插入图片描述
在这里插入图片描述

1.2 sklearn中的降维算法

在这里插入图片描述

2 PCA与SVD (特征创造)

在这里插入图片描述
为什么方差计算公式中为什么除数是n-1?
这是为了得到样本方差的无偏估计,更多大家可以自己去探索~

2.1 降维究竟是怎样实现?

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2 重要参数n_components(即降维后需要保留的特征数量)

  1. pca = PCA(n_components=2)
  2. PCA(n_components=“mle”)
  3. 按信息量占比选超参数:PCA(n_components=0.97,svd_solver=“full”)

2.2.1 迷你案例:高维数据的可视化

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2.2 最大似然估计自选超参数 :(输入“mle”作为n_components的参数输入)

帮你算出保留几个在特征比较合适
在这里插入图片描述

2.2.3 按信息量占比选超参数:PCA(n_components=0.97,svd_solver=“full”)

输入[0,1]之间的浮点数,并且让参数svd_solver ==‘full’,表示希望降维后的总解释性方差占比大于n_components
指定的百分比,即是说,希望保留百分之多少的信息量。

比如说,如果我们希望保留97%的信息量,就可以输入n_components = 0.97,PCA会自动选出能够让保留的信息量超过97%的特征数量。
在这里插入图片描述

2.3 PCA中的SVD

2.3.1 PCA中的SVD哪里来?

在这里插入图片描述

2.3.2 重要参数svd_solver 与 random_state

在这里插入图片描述

2.3.3 重要属性components

在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-21 20:50:48  更:2022-03-21 20:53:38 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/9 2:04:42-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码