IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Pytorch实现FCN中对损失函数的理解 -> 正文阅读

[人工智能]Pytorch实现FCN中对损失函数的理解

代码:https://github.com/bat67/pytorch-FCN-easiest-demo

FCN网络的输出

输入网络的图片大小为H×W,通道数为3(RGB图像)。
而经过卷积和上采样过程,输出图片大小不变,仍为H×W,通道数为分割的类别数C
在Pytorch中输出的shape为torch.Size([C, H, W])

在这里插入图片描述

FCN网络的损失函数

criterion = nn.BCELoss().to(device)
loss = criterion(output, mask)

可以看出,损失函数是计算output(即FCN网络输出)与mask之间的交叉熵损失。
我们需要理解的是,mask如何转换成与output相同的shape,即torch.Size([C, H, W]),这样两者之间才能计算损失。

对mask数据的处理

以分割bag图片为例,分割类别为2类(C=2),分别为bag和background,如图所示,左侧为原始图片,右侧为图片对应的mask。

接下来对于mask图片进行处理,将其转换为shape为torch.Size([C=2, H, W])的tensor。
mask = cv2.imread('path', 0)
mask = cv2.resize(mask, (10, 10))
mask = mask / 255
mask = mask.astype('uint8')
mask = onehot(mask, 2)
mask = mask.transpose(2, 0, 1)
mask = torch.FloatTensor(mask)
  • 第一步,读取mask图片,注意这里imread函数的flag=0,表示为灰度图,此时图片大小为H×W,通道数为1。
    这里我们为了便于显示mask中的值,将它大小改为10×10(原始代码中是160×160)
mask = cv2.imread('path', 0)
mask = cv2.resize(mask, (10, 10))
  • 第二步,将mask归一化,这时像素值变为0-1之间的浮点数
mask = mask / 255
  • 第三步,将浮点数转换为整型,这时像素值变为0或1,此时我们就能理解了,像素值为0的点代表background,而像素值为1的点代表bag。
mask = mask.astype('uint8')
  • 第四步,将mask转换成one-hot编码格式
mask = onehot(mask, 2)

onehot函数:

def onehot(data, n):
    buf = np.zeros(data.shape + (n, ))
    nmsk = np.arange(data.size) * n + data.ravel()
    buf.ravel()[nmsk - 1] = 1
    return buf

这时,mask的大小从10×10变成了10×10×2,原本的像素值由0 / 1,变成了[0, 1] / [1, 0],也就是将通道数从1变成了2。

  • 最后一步,将numpy.ndarray格式的mask转换成Tensor。
mask = mask.transpose(2, 0, 1)  # 10×10×2 → 2×10×10
mask = torch.FloatTensor(mask)  # numpy.ndarray → torch.Tensor

此时,mask的shape就转换为了torch.Size([C, H, W]),即torch.Size([2, 10, 10]),与FCN网络的output大小相同,二者之间就可以计算损失函数了。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-22 20:35:19  更:2022-03-22 20:39:13 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/9 1:45:46-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码