IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 模型选择+过拟合+欠拟合 -> 正文阅读

[人工智能]模型选择+过拟合+欠拟合

模型选择

当我们训练模型时,我们只能访问数据中的小部分样本。 最大的公开图像数据集包含大约一百万张图像。 而在大部分时候,我们只能从数千或数万个数据样本中学习。

将模型在训练数据上拟合的比在潜在分布中更接近的现象称为过拟合(overfitting), 用于对抗过拟合的技术称为正则化(regularization)。 在前面的章节中,你可能在用Fashion-MNIST数据集做实验时已经观察到了这种过拟合现象。 在实验中调整模型架构或超参数时,你会发现: 如果有足够多的神经元、层数和训练迭代周期, 模型最终可以在训练集上达到完美的精度,此时测试集的准确性却下降了。

训练误差和泛化误差

训练误差(training error): 模型在训练数据集上计算得到的误差。
泛化误差(generalization error): 模型应用在同样从原始样本的分布中抽取的无限多数据样本时,模型误差的期望。

在实际中,对于泛化误差,我们只能通过将模型应用于一个独立的测试集来估计泛化误差, 该测试集由随机选取的、未曾在训练集中出现的数据样本构成。

一个简单的思维实验: 假设一个大学生正在努力准备期末考试。 一个勤奋的学生会努力做好练习,并利用往年的考试题目来测试自己的能力。 尽管如此,在过去的考试题目上取得好成绩并不能保证他会在真正考试时发挥出色。 例如,学生A可能试图通过死记硬背考题的答案来做准备。 他甚至可以完全记住过去考试的答案。 学生B可能会通过试图理解给出某些答案的原因来做准备。 在大多数情况下,后者会考得更好。

再例如考虑一个简单地使用查表法来回答问题的模型。 如果允许的输入集合是离散的并且相当小, 那么也许在查看许多训练样本后,该方法将执行得很好。 但当这个模型面对从未见过的例子时,它表现的可能比随机猜测好不到哪去。 这是因为输入空间太大了,远远不可能记住每一个可能的输入所对应的答案。 例如,考虑 28×28 的灰度图像。 如果每个像素可以取 256 个灰度值中的一个, 则有 256^784 个可能的图像。 这意味着指甲大小的低分辨率灰度图像的数量比宇宙中的原子要多得多。 即使我们可能遇到这样的数据,我们也不可能存储整个查找表。

统计学习理论

在我们目前已探讨、并将在之后继续探讨的监督学习情景中, 我们假设训练数据和测试数据都是从相同的分布中独立提取的。 这通常被称为独立同分布假设(i.i.d. assumption), 这意味着对数据进行采样的过程没有进行“记忆”。 换句话说,抽取的第2个样本和第3个样本的相关性, 并不比抽取的第2个样本和第200万个样本的相关性更强。

这很容易找出假设失效的情况。 如果我们根据从加州大学旧金山分校医学中心的患者数据训练死亡风险预测模型, 并将其应用于马萨诸塞州综合医院的患者数据,结果会怎么样? 这两个数据的分布可能不完全一样。 此外,抽样过程可能与时间有关。 比如当我们对微博的主题进行分类时, 新闻周期会使得正在讨论的话题产生时间依赖性,从而违反独立性假设。

有时候我们即使轻微违背独立同分布假设,模型仍将继续运行得非常好。 比如,我们有许多有用的工具已经应用于现实,如人脸识别、语音识别和语言翻译。 毕竟,几乎所有现实的应用都至少涉及到一些违背独立同分布假设的情况。

有些违背独立同分布假设的行为肯定会带来麻烦。 比如,我们试图只用来自大学生的人脸数据来训练一个人脸识别系统, 然后想要用它来监测疗养院中的老人。 这不太可能有效,因为大学生看起来往往与老年人有很大的不同。

模型复杂性

当我们有简单的模型和大量的数据时,我们期望泛化误差与训练误差相近。 当我们有更复杂的模型和更少的样本时,我们预计训练误差会下降,但泛化误差会增大。 模型复杂性由什么构成是一个复杂的问题。 一个模型是否能很好地泛化取决于很多因素。 例如,具有更多参数的模型可能被认为更复杂, 参数有更大取值范围的模型可能更为复杂。 通常对于神经网络,我们认为需要更多训练迭代的模型比较复杂, 而需要“早停”(early stopping)的模型(即较少训练迭代周期)就不那么复杂。

影响模型泛化的因素:
1.可调整参数的数量。当可调整参数的数量(有时称为自由度)很大时,模型往往更容易过拟合。
2.参数采用的值。当权重的取值范围较大时,模型可能更容易过拟合。
3.训练样本的数量。即使你的模型很简单,也很容易过拟合只包含一两个样本的数据集。而过拟合一个有数百万个样本的数据集则需要一个极其灵活的模型。

模型选择

在机器学习中,我们通常在评估几个候选模型后选择最终的模型。 这个过程叫做模型选择。 有时,需要进行比较的模型在本质上是完全不同的(比如,决策树与线性模型)。 又有时,我们需要比较不同的超参数设置下的同一类模型。

验证集

原则上,在我们确定所有的超参数之前,我们不希望用到测试集。 如果我们在模型选择过程中使用测试数据,可能会有过拟合测试数据的风险,因此,我们决不能依靠测试数据进行模型选择。 然而,我们也不能仅仅依靠训练数据来选择模型,因为我们无法估计训练数据的泛化误差。

在实际应用中,情况变得更加复杂。 虽然理想情况下我们只会使用测试数据一次, 以评估最好的模型或比较一些模型效果,但现实是测试数据很少在使用一次后被丢弃。 我们很少能有充足的数据来对每一轮实验采用全新测试集。

解决此问题的常见做法是将我们的数据分成三份, 除了训练和测试数据集之外,还增加一个验证数据集(validation dataset), 也叫验证集(validation set)。 但现实是验证数据和测试数据之间的边界模糊得令人担忧。 除非另有明确说明,否则在这本书的实验中, 我们实际上是在使用应该被正确地称为训练数据和验证数据的数据集, 并没有真正的测试数据集。 因此,书中每次实验报告的准确度都是验证集准确度,而不是测试集准确度。

𝐾 折交叉验证

当训练数据稀缺时,我们甚至可能无法提供足够的数据来构成一个合适的验证集。 这个问题的一个流行的解决方案是采用𝐾折交叉验证。 这里,原始训练数据被分成𝐾个不重叠的子集。 然后执行𝐾次模型训练和验证,每次在𝐾?1个子集上进行训练, 并在剩余的一个子集(在该轮中没有用于训练的子集)上进行验证。 最后,通过对𝐾次实验的结果取平均来估计训练和验证误差。

欠拟合还是过拟合

当我们比较训练和验证误差时,我们要注意两种常见的情况。 首先,我们要注意这样的情况:训练误差和验证误差都很严重, 但它们之间仅有一点差距。 如果模型不能降低训练误差,这可能意味着模型过于简单(即表达能力不足), 无法捕获试图学习的模式。 此外,由于我们的训练和验证误差之间的泛化误差很小, 我们有理由相信可以用一个更复杂的模型降低训练误差。 这种现象被称为欠拟合(underfitting)。

另一方面,当我们的训练误差明显低于验证误差时要小心, 这表明严重的过拟合(overfitting)。 注意,过拟合并不总是一件坏事。 特别是在深度学习领域,众所周知, 最好的预测模型在训练数据上的表现往往比在保留(验证)数据上好得多。 最终,我们通常更关心验证误差,而不是训练误差和验证误差之间的差距。

模型的复杂性

为了说明一些关于过拟合和模型复杂性的经典直觉, 我们给出一个多项式的例子。 给定由单个特征 𝑥 和对应实数标签 𝑦 组成的训练数据, 我们试图找到下面的 𝑑 阶多项式来估计标签 𝑦 。
在这里插入图片描述
这只是一个线性回归问题,我们的特征是 𝑥 的幂给出的, 模型的权重是 𝑤𝑖 给出的,偏置是 𝑤0 给出的 (因为对于所有的 𝑥 都有 𝑥0=1 )。 由于这只是一个线性回归问题,我们可以使用平方误差作为我们的损失函数。

模型容量

  • 拟合各种函数的能力
  • 低容量的模型难以拟合训练数据
  • 高容量的模型可以记住所有的训练数据
    在这里插入图片描述

高阶多项式函数比低阶多项式函数复杂得多。 高阶多项式的参数较多,模型函数的选择范围较广。 因此在固定训练数据集的情况下, 高阶多项式函数相对于低阶多项式的训练误差应该始终更低(最坏也是相等)。 事实上,当数据样本包含了 𝑥 的不同值时, 函数阶数等于数据样本数量的多项式函数可以完美拟合训练集。

数据集大小

另一个重要因素是数据集的大小。 训练数据集中的样本越少,我们就越有可能(且更严重地)过拟合。 随着训练数据量的增加,泛化误差通常会减小。 此外,一般来说,更多的数据不会有什么坏处。 对于固定的任务和数据分布,模型复杂性和数据集大小之间通常存在关系。 给出更多的数据,我们可能会尝试拟合一个更复杂的模型。 能够拟合更复杂的模型可能是有益的。 如果没有足够的数据,简单的模型可能更有用。 对于许多任务,深度学习只有在有数千个训练样本时才优于线性模型。 从一定程度上来说,深度学习目前的生机要归功于 廉价存储、互联设备以及数字化经济带来的海量数据集。

举例过拟合和欠拟合

1.导入相应包

import math
import numpy as np
import torch
from torch import nn
from d2l import torch as d2l

2.生成数据集
在这里插入图片描述
噪声项 𝜖 服从均值为0且标准差为0.1的正态分布。 在优化的过程中,我们通常希望避免非常大的梯度值或损失值。 这就是我们将特征从 𝑥𝑖 调整为 𝑥𝑖/𝑖! 的原因, 这样可以避免很大的 𝑖 带来的特别大的指数值。 我们将为训练集和测试集各生成100个样本。

max_degree = 20  # 多项式的最大阶数
n_train, n_test = 100, 100  # 训练和测试数据集大小
true_w = np.zeros(max_degree)  # 分配大量的空间
true_w[0:4] = np.array([5, 1.2, -3.4, 5.6])

features = np.random.normal(size=(n_train + n_test, 1))
np.random.shuffle(features)
poly_features = np.power(features, np.arange(max_degree).reshape(1, -1))
for i in range(max_degree):
    poly_features[:, i] /= math.gamma(i + 1)  # gamma(n)=(n-1)!
# labels的维度:(n_train+n_test,)
labels = np.dot(poly_features, true_w)
labels += np.random.normal(scale=0.1, size=labels.shape)

同样,存储在poly_features中的单项式由gamma函数重新缩放, 其中 Γ(𝑛)=(𝑛?1)! 。 从生成的数据集中[查看一下前2个样本], 第一个值是与偏置相对应的常量特征。

# NumPy ndarray转换为tensor
true_w, features, poly_features, labels = [torch.tensor(x, dtype=
    torch.float32) for x in [true_w, features, poly_features, labels]]
    features[:2], poly_features[:2, :], labels[:2]

在这里插入图片描述
3.损失函数

def evaluate_loss(net, data_iter, loss):  #@save
    """评估给定数据集上模型的损失"""
    metric = d2l.Accumulator(2)  # 损失的总和,样本数量
    for X, y in data_iter:
        out = net(X)
        y = y.reshape(out.shape)
        l = loss(out, y)
        metric.add(l.sum(), l.numel())
    return metric[0] / metric[1]

4.训练

def train(train_features, test_features, train_labels, test_labels,
          num_epochs=400):
    loss = nn.MSELoss(reduction='none')
    input_shape = train_features.shape[-1]
    # 不设置偏置,因为我们已经在多项式中实现了它
    net = nn.Sequential(nn.Linear(input_shape, 1, bias=False))
    batch_size = min(10, train_labels.shape[0])
    train_iter = d2l.load_array((train_features, train_labels.reshape(-1,1)),
                                batch_size)
    test_iter = d2l.load_array((test_features, test_labels.reshape(-1,1)),
                               batch_size, is_train=False)
    trainer = torch.optim.SGD(net.parameters(), lr=0.01)
    animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log',
                            xlim=[1, num_epochs], ylim=[1e-3, 1e2],
                            legend=['train', 'test'])
    for epoch in range(num_epochs):
        d2l.train_epoch_ch3(net, train_iter, loss, trainer)
        if epoch == 0 or (epoch + 1) % 20 == 0:
            animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss),
                                     evaluate_loss(net, test_iter, loss)))
    print('weight:', net[0].weight.data.numpy())

5.正常拟合

# 从多项式特征中选择前4个维度,即1,x,x^2/2!,x^3/3!
train(poly_features[:n_train, :4], poly_features[n_train:, :4],
      labels[:n_train], labels[n_train:])

在这里插入图片描述
6.欠拟合

# 从多项式特征中选择前2个维度,即1和x
train(poly_features[:n_train, :2], poly_features[n_train:, :2],
      labels[:n_train], labels[n_train:])

在这里插入图片描述
7.过拟合

# 从多项式特征中选取所有维度
train(poly_features[:n_train, :], poly_features[n_train:, :],
      labels[:n_train], labels[n_train:], num_epochs=1500)

在这里插入图片描述

小结

欠拟合是指模型无法继续减少训练误差。过拟合是指训练误差远小于验证误差。
由于不能基于训练误差来估计泛化误差,因此简单地最小化训练误差并不一定意味着泛化误差的减小。机器学习模型需要注意防止过拟合,即防止泛化误差过大。
验证集可以用于模型选择,但不能过于随意地使用它。
我们应该选择一个复杂度适当的模型,避免使用数量不足的训练样本。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-24 00:32:32  更:2022-03-24 00:34:55 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 14:30:32-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码