IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Pytorch CHATBOT TUTORIAL attention decoder (Luong) 维度变化讲解 -> 正文阅读

[人工智能]Pytorch CHATBOT TUTORIAL attention decoder (Luong) 维度变化讲解

上一篇中介绍了seq2seq for translation中decoder with attention的维度变化,这篇将介绍另一个pytorch教程chatbot中 attention decoder的部分

模型架构为传统的seq2seq模型
在这里插入图片描述
encoder负责将变长的句子转变为固定长度的vector,包括了句子的语义
decoder将input word和encoder输出的向量作为输入,每次输出一个output预测这个时间步的输出word,以及一个hidden作为下一次时间步的输入。

在这里插入图片描述

关于encoder的输入输出维度:
在这里插入图片描述

class EncoderRNN(nn.Module):
    def __init__(self, hidden_size, embedding, n_layers=1, dropout=0):
        super(EncoderRNN, self).__init__()
        self.n_layers = n_layers
        self.hidden_size = hidden_size
        self.embedding = embedding

        # Initialize GRU; the input_size and hidden_size params are both set to 'hidden_size'
        #   because our input size is a word embedding with number of features == hidden_size
        self.gru = nn.GRU(hidden_size, hidden_size, n_layers,
                          dropout=(0 if n_layers == 1 else dropout), bidirectional=True)

    def forward(self, input_seq, input_lengths, hidden=None):
        # Convert word indexes to embeddings
        embedded = self.embedding(input_seq)
        # Pack padded batch of sequences for RNN module
        packed = nn.utils.rnn.pack_padded_sequence(embedded, input_lengths)
        # Forward pass through GRU
        outputs, hidden = self.gru(packed, hidden)
        # Unpack padding
        outputs, _ = nn.utils.rnn.pad_packed_sequence(outputs)
        # Sum bidirectional GRU outputs
        outputs = outputs[:, :, :self.hidden_size] + outputs[:, : ,self.hidden_size:]
        # Return output and final hidden state
        return outputs, hidden

例如输入的input _seq维度: torch.Size([10, 5])代表最大句子长度为10,batch为5
lengths: tensor([10, 9, 9, 8, 8])代表了五个句子对应的长度

输出:
encoder_outputs torch.Size([10, 64, 500])
encoder_hidden torch.Size([4, 64, 500]) nlayers=2,direction=2
在这里插入图片描述

在这里插入图片描述

# Luong attention layer
class Attn(nn.Module):
    def __init__(self, method, hidden_size):
        super(Attn, self).__init__()
        self.method = method
        if self.method not in ['dot', 'general', 'concat']:
            raise ValueError(self.method, "is not an appropriate attention method.")
        self.hidden_size = hidden_size
        if self.method == 'general':
            self.attn = nn.Linear(self.hidden_size, hidden_size)
        elif self.method == 'concat':
            self.attn = nn.Linear(self.hidden_size * 2, hidden_size)
            self.v = nn.Parameter(torch.FloatTensor(hidden_size))

    def dot_score(self, hidden, encoder_output):
        return torch.sum(hidden * encoder_output, dim=2)

    def general_score(self, hidden, encoder_output):
        energy = self.attn(encoder_output)
        return torch.sum(hidden * energy, dim=2)

    def concat_score(self, hidden, encoder_output):
        energy = self.attn(torch.cat((hidden.expand(encoder_output.size(0), -1, -1), encoder_output), 2)).tanh()
        return torch.sum(self.v * energy, dim=2)

    def forward(self, hidden, encoder_outputs):
        # Calculate the attention weights (energies) based on the given method
        if self.method == 'general':
            attn_energies = self.general_score(hidden, encoder_outputs)
        elif self.method == 'concat':
            attn_energies = self.concat_score(hidden, encoder_outputs)
        elif self.method == 'dot':
            attn_energies = self.dot_score(hidden, encoder_outputs)

        # Transpose max_length and batch_size dimensions
        attn_energies = attn_energies.t()

        # Return the softmax normalized probability scores (with added dimension)
        return F.softmax(attn_energies, dim=1).unsqueeze(1)

Attn返回的vector的维度为(batch_size, 1, max_length).

Computation Graph:

Get embedding of current input word.
Forward through unidirectional GRU.
Calculate attention weights from the current GRU output from (2).
Multiply attention weights to encoder outputs to get new “weighted sum” context vector.
Concatenate weighted context vector and GRU output using Luong eq. 5.
Predict next word using Luong eq. 6 (without softmax).
Return output and final hidden state.

代码中concat_output在Luong et al.中的公示表示
在这里插入图片描述
在这里插入图片描述

decoder输入的input_step维度为[1,batch]
encoder_outputs torch.Size([max_length, batch, hidden])

经过embedding:
embedded torch.Size([1, batch, hidden])

经过Gru:
rnn_output torch.Size([1, batch, hidden])
hidden torch.Size([2, batch, hidden]) 因为layers * directions=2

经过attn:
attn_weights torch.Size([batch, 1, max_length])

经过bmm:
context torch.Size([batch, 1, hidden])

concat_input torch.Size([batch, 2*hidden])
concat_output torch.Size([batch, hidden])

经过out:
output torch.Size([batch, hidden])

class LuongAttnDecoderRNN(nn.Module):
    def __init__(self, attn_model, embedding, hidden_size, output_size, n_layers=1, dropout=0.1):
        super(LuongAttnDecoderRNN, self).__init__()

        # Keep for reference
        self.attn_model = attn_model
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.n_layers = n_layers
        self.dropout = dropout

        # Define layers
        self.embedding = embedding
        self.embedding_dropout = nn.Dropout(dropout)
        self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=(0 if n_layers == 1 else dropout))
        self.concat = nn.Linear(hidden_size * 2, hidden_size)
        self.out = nn.Linear(hidden_size, output_size)

        self.attn = Attn(attn_model, hidden_size)


    def forward(self, input_step, last_hidden, encoder_outputs):
        # Note: we run this one step (word) at a time
        # Get embedding of current input word
        #torch.Size([1, batch, hidden])
        embedded = self.embedding(input_step)
        embedded = self.embedding_dropout(embedded)
        
        # Forward through unidirectional GRU
        #rnn_output torch.Size([1, batch, hidden])
        #hidden torch.Size([2, batch, hidden]) 因为layers=2
        rnn_output, hidden = self.gru(embedded, last_hidden)
        
        # Calculate attention weights from the current GRU output
        #attn_weights torch.Size([batch, 1, max_length])
        attn_weights = self.attn(rnn_output, encoder_outputs)
        
        # Multiply attention weights to encoder outputs to get new "weighted sum" context vector
 		#context torch.Size([batch, 1, hidden])
        context = attn_weights.bmm(encoder_outputs.transpose(0, 1))
        
        # Concatenate weighted context vector and GRU output using Luong eq. 5
        rnn_output = rnn_output.squeeze(0)
        context = context.squeeze(1)
        
        #concat_input torch.Size([batch, 2*hidden])
        #concat_output torch.Size([batch, hidden])
        concat_input = torch.cat((rnn_output, context), 1)
        concat_output = torch.tanh(self.concat(concat_input))
        
        # Predict next word using Luong eq. 6
        output = self.out(concat_output)
        output = F.softmax(output, dim=1)
        # Return output and final hidden state
        #output torch.Size([batch, hidden])
		#hidden torch.Size([2, batch, hidden])
        return output, hidden
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-24 00:32:32  更:2022-03-24 00:36:18 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/9 2:11:04-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码