IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 数据分析之数据可视化 -> 正文阅读

[人工智能]数据分析之数据可视化

第二章:数据可视化

前期准备
# 加载所需的库
# 如果出现 ModuleNotFoundError: No module named 'xxxx'
# 你只需要在终端/cmd下 pip install xxxx 即可
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

text = pd.read_csv(r'result.csv')
text.head()

2.7:如何让人一眼看懂你的数据?

2.7.1:跟着书本第九章,了解matplotlib,自己创建一个数据项,对其进行基本可视化

【思考】最基本的可视化图案有哪些?分别适用于那些场景?(比如折线图适合可视化某个属性值随时间变化的走势)
  • 柱状图:它的适用场合是二维数据集(每个数据点包括两个值x和y),但只有一个维度需要比较。
  • 折线图:折线图适合二维的大数据集,尤其是那些趋势比单个数据点更重要的场合。
  • 饼图:饼图是一种应该避免使用的图表,因为肉眼对面积大小不敏感。
  • 散点图:散点图适用于三维数据集,但其中只有两维需要比较。
  • 气泡图:气泡图是散点图的一种变体,通过每个点的面积大小,反映第三维
  • 雷达图:雷达图适用于多维数据(四维以上),且每个维度必须可以排序(国籍就不可以排序)。但是,它有一个局限,就是数据点最多6个,否则无法辨别,因此适用场合有限。

2.7.2:可视化展示泰坦尼克号数据集中男女中生存人数分布情况(用柱状图试试)

sex = text.groupby('Sex')['Survived'].sum()
sex.plot.bar()
plt.title('survived_count')
plt.show()

2.7.3:可视化展示泰坦尼克号数据集中男女中生存人与死亡人数的比例图(用柱状图试试)

text.groupby(['Sex','Survived'])['Survived'].count().unstack().plot(kind='bar',stacked='True')
plt.title('survived_count')
plt.ylabel('count')

2.7.4:可视化展示泰坦尼克号数据集中不同票价的人生存和死亡人数分布情况。(用折线图试试)(横轴是不同票价,纵轴是存活人数)

# 计算不同票价中生存与死亡人数 1表示生存,0表示死亡
fare_sur = text.groupby(['Fare'])['Survived'].value_counts().sort_values(ascending=False)
fare_sur

# 排序后绘折线图
fig = plt.figure(figsize=(20, 18))
fare_sur.plot(grid=True)
plt.legend()
plt.show()

# 排序前绘折线图
fare_sur1 = text.groupby(['Fare'])['Survived'].value_counts()
fare_sur1
fig = plt.figure(figsize=(20, 18))
fare_sur1.plot(grid=True)
plt.legend()
plt.show()
当数据量较大,折线图看不清楚时,可以采用先排序后绘图

2.7.5:可视化展示泰坦尼克号数据集中不同仓位等级的人生存和死亡人员的分布情况。(用柱状图试试)

# 1表示生存,0表示死亡
pclass_sur = text.groupby(['Pclass'])['Survived'].value_counts()
pclass_sur

import seaborn as sns
sns.countplot(x="Pclass", hue="Survived", data=text)
使用seaborn更方便,减少代码量

2.7.6:可视化展示泰坦尼克号数据集中不同年龄的人生存与死亡人数分布情况。(不限表达方式)

facet = sns.FacetGrid(text, hue="Survived",aspect=3)
facet.map(sns.kdeplot,'Age',shade= True)
facet.set(xlim=(0, text['Age'].max()))
facet.add_legend()

2.7.7:可视化展示泰坦尼克号数据集中不同仓位等级的人年龄分布情况。(用折线图试试)

text.Age[text.Pclass == 1].plot(kind='kde')
text.Age[text.Pclass == 2].plot(kind='kde')
text.Age[text.Pclass == 3].plot(kind='kde')
plt.xlabel("age")
plt.legend((1,2,3),loc="best")
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-24 00:32:32  更:2022-03-24 00:36:26 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/9 1:55:07-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码