IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> [python] 3D医学数据增强 示例+代码 -> 正文阅读

[人工智能][python] 3D医学数据增强 示例+代码


数据增强是深度训练过程中一个重要的步骤,2d的数据增强现在已经比较成熟,官方也有自己的数据增强函数。然而,3d数据增强的代码却不是很多,这里分析一下我所使用到的3d医学数据的数据增强方法。

3D医学数据

在医学图像处理领域,常见的两种医学图像格式是nii 和 DICOM 文件,在我的项目中,我首先实现了dicom数据到nii数据的转化。
nii格式我们可以使用ITK-SNAP 软件来查看。如图:
在这里插入图片描述
在这一次的代码中,数据的读取是nii格式,但是无论什么格式并不影响之后的数据增强操作,因为都是先读取为array格式然后再操作。

数据增强库

这里介绍两种比较常见的3d医学数据增强库:

  1. Volumentations 3D
from volumentations import *

基于python的3d数据增强库,所以在tf和pytorch上都可以使用。

  1. TorchIO
    基于pytorch的3d数据增强库,不仅包含了数据增强操作还有很多医学图像的处理方法。
import torchio as tio

这里我主要介绍第一种库的使用,同时,一些函数是我自己写的。

数据可视化

如果我们想要观察3d医学图像,通常是使用ITK-SNAP 软件打开nii文件。所以当我们对原始图像进行完数据增强操作,将其保存为nii文件,然后使用itk-snap查看,array转nii代码如下:

from scipy import ndimage
import nibabel as nib
new_image = nib.Nifti1Image(my_arr, np.eye(4)) 
nib.save(new_image, 'nifti.nii.gz')

但是,每进行一次数据增强,就保存一个新的nii文件并打开查看过于繁琐,于是我自己写了一个可视化函数draw_oct,他可以画出每个维度上中轴线切片图像,就像itk-snap一样,选取的是每个维度的中心。
其中,volume是要可视化的数据,type_volume是数据类型,np对应与使用Volumentations 3D的数据,tensor对一应的是使用TorchIO的数据。最后一个canal_first是通道维度的位置,我们在进行深度学习时使用的虽然是3d医学数据,但是网络的输入往往要求是四维的,除了高度深度宽度,还有一个通道数,通常是1或3,代表着灰度图片或者彩色图片。它的位置在tf或torch中也是不尽相同,有时在第一个有时在最后一个,我们使用函数时应该注意这一点。

import matplotlib.pyplot as plt
def draw_oct(volume, type_volume = 'np',canal_first = False):
    if type_volume == 'np':
        if canal_first == False:
            print("taille du volume = %s (%s)"%(volume.shape,type_volume))
            slice_h_n, slice_d_n , slice_w_n = int(volume.shape[0]/2),int(volume.shape[1]/2),int(volume.shape[2]/2) 
            slice_h = volume[slice_h_n,:,:,:]
            slice_d = volume[:,slice_d_n,:,:]
            slice_w = volume[:,:,slice_w_n,:]
            slice_h = Image.fromarray(np.squeeze(slice_h))
            slice_d = Image.fromarray(np.squeeze(slice_d))
            slice_w = Image.fromarray(np.squeeze(slice_w))
            plt.figure(figsize=(21,7))
            plt.subplot(1, 3, 1)
            plt.imshow(slice_h)
            plt.title(slice_h.size)
            plt.axis('off')
            plt.subplot(1, 3, 2)
            plt.imshow(slice_d)
            plt.title(slice_d.size)
            plt.axis('off')
            plt.subplot(1, 3, 3)
            plt.imshow(slice_w)
            plt.title(slice_w.size)
            plt.axis('off')
        if canal_first == True:
            print("taille du volume = %s (%s)"%(volume.shape,type_volume))
            slice_h_n, slice_d_n , slice_w_n = int(volume.shape[1]/2),int(volume.shape[2]/2),int(volume.shape[3]/2) 
            slice_h = volume[:,slice_h_n,:,:]
            slice_d = volume[:,:,slice_d_n,:]
            slice_w = volume[:,:,:,slice_w_n]
            slice_h = Image.fromarray(np.squeeze(slice_h))
            slice_d = Image.fromarray(np.squeeze(slice_d))
            slice_w = Image.fromarray(np.squeeze(slice_w))
            plt.figure(figsize=(21,7))
            plt.subplot(1, 3, 1)
            plt.imshow(slice_h)
            plt.title(slice_h.size)
            plt.axis('off')
            plt.subplot(1, 3, 2)
            plt.imshow(slice_d)
            plt.title(slice_d.size)
            plt.axis('off')
            plt.subplot(1, 3, 3)
            plt.imshow(slice_w)
            plt.title(slice_w.size)
            plt.axis('off')
            
    if type_volume == 'tensor':
        print("taille du volume = %s (%s)"%(volume.shape,type_volume))
        slice_h_n, slice_d_n , slice_w_n = int(volume.shape[0]/2),int(volume.shape[1]/2),int(volume.shape[2]/2) 
        slice_h = volume[slice_h_n,:,:,:].numpy()
        slice_d = volume[:,slice_d_n,:,:].numpy()
        slice_w = volume[:,:,slice_w_n,:].numpy()
        slice_h = Image.fromarray(np.squeeze(slice_h))
        slice_d = Image.fromarray(np.squeeze(slice_d))
        slice_w = Image.fromarray(np.squeeze(slice_w))
        plt.figure(figsize=(21,7))
        plt.subplot(1, 3, 1)
        plt.imshow(slice_h)
        plt.title(slice_h.size)
        plt.axis('off')
        plt.subplot(1, 3, 2)
        plt.imshow(slice_d)
        plt.title(slice_d.size)
        plt.axis('off')
        plt.subplot(1, 3, 3)
        plt.imshow(slice_w)
        plt.title(slice_w.size)
        plt.axis('off')

原始图片

画一下原始图片的样子,以便和使用数据增强后的图片做对比:

import numpy as np
from scipy import ndimage
import nibabel as nib
image_structure_name = "structure_volume_25.nii.gz"
volume_structure_ori = nib.load(image_structure_name)
volume_structure_ori = volume_structure_ori.get_data().astype(np.float32)
draw_oct(volume_structure_ori)

在这里插入图片描述

数据增强操作

我会分析一下每种数据增强的操作,其中,Volumentations 3D库不同函数中的p代表着执行这个操作的概率。如果你想进行多种数据增强操作,请使用Compose函数。

Resize

def resize_image(image, image_size):
    """
    Resizes an image to the neural network input size.

    :param image: input image

    :return: the resized image
    """
    epsilon = 1e-6
    image = ndimage.zoom(image, zoom=[(float(image_size[i]) / image.shape[i] + epsilon)
                                      for i in range(4)], order=1)
    trim = [(image.shape[i] - image_size[i]) // 2 for i in range(3)]
    return image[trim[0]:trim[0] + image_size[0], trim[1]:trim[1] + image_size[1],
           trim[2]:trim[2] + image_size[2], :]
volume_structure_224 = resize_image(volume_structure_ori, (224, 224, 224, 1))
draw_oct(volume_structure_224)

在这里插入图片描述

Randomcorp

patch_size = (224,224,224)
aug_randomcrop = Compose([
                         #Rotate((-15, 15), (0, 0), (0, 0), p=0.5),
                         #RandomCropFromBorders(crop_value=0.1, p=0.5),
                         #ElasticTransform((0, 0.25), interpolation=2, p=0.1),
                         #RandomDropPlane(plane_drop_prob=0.1, axes=(0, 1, 2), p=0.5),
                         RandomCrop(patch_size)
                         #GaussianNoise(var_limit=(0, 5), p=0.5),
                         #RandomGamma(gamma_limit=(0.5, 1.5), p=0.5)
                    ], p=1.0)
data_structure = {'image': volume_structure_ori}
aug_data = aug_randomcrop(**data_structure)
volume_randomcrop = aug_data['image']
draw_oct(volume_randomcrop)

在这里插入图片描述

Pad

默认使用constant模式的补0操作,如果你想改变pad的参数,请参阅volumentations中原函数的参数选项。

aug_pad = Compose([PadIfNeeded(shape = (300,300,300), border_mode= "constant")
                         #Flip(0, p=0.5),Flip(2, p=0.5)
                         #Rotate((-15, 15), (0, 0), (0, 0), p=0.5),
                         #RandomCropFromBorders(crop_value=0.1, p=0.5),
                         #ElasticTransform((0, 0.25), interpolation=2, p=0.1),
                         #RandomDropPlane(plane_drop_prob=0.1, axes=(0, 1, 2), p=0.5),
                         #RandomCrop(patch_size)
                         #GaussianNoise(var_limit=(0, 5), p=0.5)
                         #RandomGamma(gamma_limit=(0.5, 1.5), p=0.5)
                    ], p=1.0)
start = time.time()
data_structure = {'image': volume_structure_224}
aug_data = aug_pad(**data_structure)
volume_pad = aug_data['image']
end = time.time()
print('time for transform =',end-start)
draw_oct(volume_pad)

在这里插入图片描述

Normalize

aug_normalize = Compose([ Normalize()]
                         #Rotate((-15, 15), (0, 0), (0, 0), p=0.5),
                         #RandomCropFromBorders(crop_value=0.1, p=0.5),
                         #ElasticTransform((0, 0.25), interpolation=2, p=0.1),
                         #RandomDropPlane(plane_drop_prob=0.1, axes=(0, 1, 2), p=0.5),
                         #RandomCrop(patch_size)
                         #GaussianNoise(var_limit=(0, 5), p=0.5),
                         #RandomGamma(gamma_limit=(0.5, 1.5), p=0.5)
                    , p=1.0)
data_structure = {'image': volume_structure_ori}
aug_data = aug_normalize(**data_structure)
volume_normalize = aug_data['image']
draw_oct(volume_normalize*255)

在这里插入图片描述

Crop

不同于randomcrop操作,crop是我自定义的遍历整个体积的函数,由于在深度上的crop操作会影响图片的病例识别,所以我只在宽度和高度上进行遍历crop。volume_size= (300, 384, 300, 1) , crop_size= (224, 384, 224, 1) 所以应该产生四个子体积。

print('volume_size=',volume_structure_ori.shape)
crop_size=(224,384,224,1)
print('crop_size=',crop_size)

h = volume_structure_ori.shape[0]
w = volume_structure_ori.shape[2]

crop_h = crop_size[0]
crop_w = crop_size[2]

nombre_h= math.ceil(h/crop_h)#向上取整
nombre_w= math.ceil(w/crop_w)

nombre_volume = 0
for i_h in range(nombre_h):
    for i_w in range(nombre_w):
        start_h = i_h * crop_h
        start_w = i_w * crop_w
        if i_h == nombre_h-1:
            start_h = h - crop_h
        if i_w == nombre_w-1:
            start_w = w - crop_w
        sub_volume = volume_structure_ori[start_h:start_h+crop_h, :, start_w:start_w+crop_w, :]
        draw_oct(sub_volume)
        nombre_volume = nombre_volume + 1
print('sub volumes nombre =',nombre_volume)

在这里插入图片描述
在这里插入图片描述

Flip

aug_flip = Compose([     Flip(0, p=0.5),Flip(2, p=0.5)
                         #Rotate((-15, 15), (0, 0), (0, 0), p=0.5),
                         #RandomCropFromBorders(crop_value=0.1, p=0.5),
                         #ElasticTransform((0, 0.25), interpolation=2, p=0.1),
                         #RandomDropPlane(plane_drop_prob=0.1, axes=(0, 1, 2), p=0.5),
                         #RandomCrop(patch_size)
                         #GaussianNoise(var_limit=(0, 5), p=0.5),
                         #RandomGamma(gamma_limit=(0.5, 1.5), p=0.5)
                    ], p=1.0)
data_structure = {'image': volume_structure_ori}
aug_data = aug_flip(**data_structure)
volume_flip = aug_data['image']
draw_oct(volume_flip)

在这里插入图片描述

Rotate

aug_rotate = Compose([     #Flip(0, p=0.5),Flip(2, p=0.5)
                         Rotate((-15, 15), (0, 0), (0, 0), p=0.5),
                         #RandomCropFromBorders(crop_value=0.1, p=0.5),
                         #ElasticTransform((0, 0.25), interpolation=2, p=0.1),
                         #RandomDropPlane(plane_drop_prob=0.1, axes=(0, 1, 2), p=0.5),
                         #RandomCrop(patch_size)
                         #GaussianNoise(var_limit=(0, 5), p=0.5),
                         #RandomGamma(gamma_limit=(0.5, 1.5), p=0.5)
                    ], p=1.0)
data_structure = {'image': volume_structure_ori}
aug_data = aug_rotate(**data_structure)
volume_rotate = aug_data['image']
draw_oct(volume_rotate)

在这里插入图片描述

ElasticTransform

这个操作比较费时间,可能导致训练时间过长,酌情使用

aug_Elastic = Compose([   #Flip(0, p=0.5),Flip(2, p=0.5)
                         #Rotate((-15, 15), (0, 0), (0, 0), p=0.5),
                         #RandomCropFromBorders(crop_value=0.1, p=0.5),
                         ElasticTransform((0, 0.25), interpolation=2, p=0.1),
                         #RandomDropPlane(plane_drop_prob=0.1, axes=(0, 1, 2), p=0.5),
                         #RandomCrop(patch_size)
                         #GaussianNoise(var_limit=(0, 5), p=0.5),
                         #RandomGamma(gamma_limit=(0.5, 1.5), p=0.5)
                    ], p=1.0)
start = time.time()
data_structure = {'image': volume_structure_ori}
aug_data = aug_Elastic(**data_structure)
volume_Elastic = aug_data['image']
end = time.time()
print('time for transform =',end-start)
draw_oct(volume_Elastic)

在这里插入图片描述

RandomRotate90

aug_RandomRotate90 = Compose([  RandomRotate90((1, 2), p=0.5)
                         #Flip(0, p=0.5),Flip(2, p=0.5)
                         #Rotate((-15, 15), (0, 0), (0, 0), p=0.5),
                         #RandomCropFromBorders(crop_value=0.1, p=0.5),
                         #ElasticTransform((0, 0.25), interpolation=2, p=0.1),
                         #RandomDropPlane(plane_drop_prob=0.1, axes=(0, 1, 2), p=0.5),
                         #RandomCrop(patch_size)
                         #GaussianNoise(var_limit=(0, 5), p=0.5),
                         
                         #RandomGamma(gamma_limit=(0.5, 1.5), p=0.5)
                    ], p=1.0)
start = time.time()
data_structure = {'image': volume_structure_ori}
aug_data = aug_RandomRotate90(**data_structure)
volume_RandomRotate90 = aug_data['image']
end = time.time()
print('time for transform =',end-start)
draw_oct(volume_RandomRotate90)

在这里插入图片描述

GaussianNoise

aug_GaussianNoise = Compose([  #RandomRotate90((1, 2), p=0.5)
                         #Flip(0, p=0.5),Flip(2, p=0.5)
                         #Rotate((-15, 15), (0, 0), (0, 0), p=0.5),
                         #RandomCropFromBorders(crop_value=0.1, p=0.5),
                         #ElasticTransform((0, 0.25), interpolation=2, p=0.1),
                         #RandomDropPlane(plane_drop_prob=0.1, axes=(0, 1, 2), p=0.5),
                         #RandomCrop(patch_size)
                         GaussianNoise(var_limit=(0, 5), p=0.5)
                         
                         #RandomGamma(gamma_limit=(0.5, 1.5), p=0.5)
                    ], p=1.0)
start = time.time()
data_structure = {'image': volume_structure_ori}
aug_data = aug_GaussianNoise(**data_structure)
volume_GaussianNoise = aug_data['image']
end = time.time()
print('time for transform =',end-start)
draw_oct(volume_GaussianNoise)

在这里插入图片描述

RandomGamma

aug_RandomGamma = Compose([  #RandomRotate90((1, 2), p=0.5)
                         #Flip(0, p=0.5),Flip(2, p=0.5)
                         #Rotate((-15, 15), (0, 0), (0, 0), p=0.5),
                         #RandomCropFromBorders(crop_value=0.1, p=0.5),
                         #ElasticTransform((0, 0.25), interpolation=2, p=0.1),
                         #RandomDropPlane(plane_drop_prob=0.1, axes=(0, 1, 2), p=0.5),
                         #RandomCrop(patch_size)
                         #GaussianNoise(var_limit=(0, 5), p=0.5)
                         RandomGamma(gamma_limit=(0.5, 1.5), p=0.5)
                    ], p=1.0)
start = time.time()
data_structure = {'image': volume_structure_ori}
aug_data = aug_RandomGamma(**data_structure)
volume_RandomGamma = aug_data['image']
end = time.time()
print('time for transform =',end-start)
draw_oct(volume_RandomGamma)

在这里插入图片描述

GridDropout

aug_GridDropout = Compose([GridDropout(ratio = 0.5,unit_size_min = 50, 
                                         unit_size_max = 60, holes_number_x = 3, holes_number_y = 2 ,holes_number_z = 2,p = 0.5) 
                         #RandomRotate90((1, 2), p=0.5)
                         #Flip(0, p=0.5),Flip(2, p=0.5)
                         #Rotate((-15, 15), (0, 0), (0, 0), p=0.5),
                         #RandomCropFromBorders(crop_value=0.1, p=0.5),
                         #ElasticTransform((0, 0.25), interpolation=2, p=0.1),
                         #RandomDropPlane(plane_drop_prob=0.1, axes=(0, 1, 2), p=0.5),
                         #RandomCrop(patch_size)
                         #GaussianNoise(var_limit=(0, 5), p=0.5)
                         #RandomGamma(gamma_limit=(0.5, 1.5), p=0.5)
                    ], p=1.0)
start = time.time()
data_structure = {'image': volume_structure_ori}
aug_data = aug_GridDropout(**data_structure)
volume_GridDropout = aug_data['image']
end = time.time()
print('time for transform =',end-start)
draw_oct(volume_GridDropout)

在这里插入图片描述

CutoutAbs

随机从原体积中用黑色覆盖一块体积。

def CutoutAbs(volume,ratio=0.5):
    
    length_w = int(ratio*volume.shape[0])
    length_d = int(ratio*volume.shape[1])
    length_h = int(ratio*volume.shape[2])
    start_w = random.randint(0,volume.shape[0])
    start_d = random.randint(0,volume.shape[1])
    start_h = random.randint(0,volume.shape[2])
    end_w = (start_w + length_w) if (start_w + length_w) < volume.shape[0] else (volume.shape[0]-1)
    end_d = (start_d + length_d) if (start_d + length_d) < volume.shape[1] else (volume.shape[1]-1)
    end_h = (start_h + length_h) if (start_h + length_h) < volume.shape[2] else (volume.shape[2]-1)
    new_volume = volume.copy()
    del volume
    new_volume[start_w:end_w,start_d:end_d, start_h:end_h,:] = 0
    return new_volume
    
volume_structure_CutoutAbs = CutoutAbs(volume_structure_ori,0.5)
draw_oct(volume_structure_CutoutAbs)

在这里插入图片描述

Random blur (torchio)

最后在这里简单提一下torchio库数据增强的用法。其输入有好几种形式,无论是array或者是tensor都可以,不过要求都是通道优先。所以要做维度转化。

volume_structure_canalfirst = volume_structure_ori.transpose(3, 0, 1, 2)
blur = tio.RandomBlur()
blurred = blur(volume_structure_canalfirst)
draw_oct(blurred,canal_first = True)

在这里插入图片描述

随机数据增强

最后,在fixmatch方法中,强数据增强的方法包括:首先从数据增强pool中随机选取n个数据增强操作,然后使用CutoutAbs。我们看看3d体积上怎么实现。

def my_augment_pool():
    augs = [#RandomCrop(patch_size),
            #Normalize(),
            Flip(0, p=0.5),
            Flip(2, p=0.5),
            Rotate((-15, 15), (0, 0), (0, 0), p=0.5),
            ElasticTransform((0, 0.25), interpolation=2, p=0.5),
            RandomRotate90((1, 2), p=0.5),
            GaussianNoise(var_limit=(0, 5), p=0.5),
            RandomGamma(gamma_limit=(0.5, 1.5), p=0.5),
            GridDropout(ratio = 0.5,unit_size_min = 50, 
                                         unit_size_max = 60, holes_number_x = 3, holes_number_y = 2 ,holes_number_z = 2,p = 0.5) 
           ]
    return augs
augs = my_augment_pool()
def RandAugmentMC(volume, augs, n = 2, crop = False ,patch_size = (224,224,224)):
    ops = random.choices(augs, k=n)
    aug_list = []
    for i in range(n):
        aug_list.append(ops[i])
    if crop == True:
        aug_list.append(RandomCrop(patch_size))
    aug_strongly = Compose(aug_list, p=1.0)
    new_volume = volume.copy()
    del volume
    start = time.time()
    data_structure = {'image': new_volume}
    aug_data = aug_strongly(**data_structure)
    new_volume = aug_data['image']
    end = time.time()
    print('time for transform =',end-start)
    new_volume = CutoutAbs(new_volume,0.5)
    return new_volume

volume_stronglyaug = RandAugmentMC(volume_structure_ori,augs,n = 2, crop=True)
draw_oct(volume_stronglyaug)

在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-03-24 00:32:32  更:2022-03-24 00:37:10 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/9 1:30:19-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码